

5/1/2020

USDA, ARS, National Sedimentation Laboratory

598 Mc Elroy Drive Oxford, MS 38655

Research Report No. 80

Prepared by:

Eddy J. Langendoen and Michael E. Ursic

Watershed Physical Processes Research Unit USDA, ARS, National Sedimentation Laboratory Oxford, MS 38655

The work presented in this report was conducted for the Sacramento District of the U.S. Army Corps of Engineers, Department of the Army under Interagency Agreement # W62N6M82061105.

EXECUTIVE SUMMARY

The Water Resources Development Act (WRDA) of 2016 provides for engineering and design activities associated with implementing projects to reduce the flood risk on the Lower American and Sacramento Rivers near Sacramento, California. The integrity of levees that protect Sacramento could be adversely affected by bank erosion. The rate of bank erosion depends, among others, on the resistance-to-erosion properties and grain-size distribution of the bank soils. At the request of the U.S. Army Corps of Engineers, Sacramento District, the US Department of Agriculture, Agricultural Research Service, National Sedimentation Laboratory, Oxford, Mississippi characterized soil texture and conducted jet-erosion testing (JET) for resistance-to-erosion properties (critical shear stress and erodibility coefficient) of the bank material along the Lower American and Sacramento Rivers.

Ten study sites on the Lower American River and eight study sites on the Sacramento River were selected by the U.S. Army Corps of Engineers, Sacramento District. At these sites bank soil stratigraphy was characterized, and soil samples were collected for grain-size and bulk density analysis in the laboratory facilities of the National Sedimentation Laboratory. JETs were conducted using a mini-jet testing device on soils that were cohesive.

Based on the Unified Soil Classification System the bank soils at the study sites were classified as: poorly graded sand (SP), poorly graded sand with silt (SP-SM), silty sand (SM), and silt (ML). The median grain size ranged from 0.032 mm (0.00126 in) to 0.285 mm (0.0112 in) with an average value of 0.121 mm (0.00476 in). Dry bulk density varied between 0.95 g cm⁻³ (59.3 lb ft⁻³) and 1.39 g cm⁻³ (86.8 lb ft⁻³).

At higher applied shear stresses, that is for the mass erosion regime, measured critical shear stresses of the bank soils varied between 0.408 and 24.7 Pa (0.00852 and 0.516 lbf ft⁻²). The corresponding erodibility coefficients varied between 0.835 and 27.2 cm hr⁻¹ Pa⁻¹ (1.31 and 42.7 ft³ lbf⁻¹ hr⁻¹). These bank soils are therefore classified as erodible to very erodible.

Table of Contents

EXECUTIVE SUMMARY	I
TABLE OF CONTENTS	
LIST OF FIGURES	v
LIST OF TABLES	VIII
LIST OF ABBREVIATIONS AND UNITS	X
CONVERSION FACTORS	XI
INTRODUCTION	1
Problem statement	1
Objective	1
Study area	1
METHODS AND MATERIALS	
Overview	
Soil erodibility	
Jet erosion test (JET)	
Soil grain size distribution, bulk density, and type	4
Bank profile geometry	5
MEASURED DATA	6
Overview	6
Study site LAR1	6
Study site LAR2	6
Study site LAR3	
Study site LAR4	14
Study site LAR5	
Study site LAR7	
Study site LAR8	
Study site LAR9	
Study site LAR10	
Study site LAR11	
Study site SAC1	
Study site SAC5	
Study site SAC5	
Study site SACO	
Study site SAC8	رد
Study site SACO	
Study site SAC10	
REFERENCED	
APPENDIX 1 DATA TABLES	77
Bank soil density	77
Grain size distribution and soil type	78
Bank soil resistance to fluvial erosion	

APPENDIX 2 NOTES	80
LAR 1	80
LAR2	
LAR3	
LAR4	
LAR5	
LAR7	86
LAR8	
LAR9	
LAR10	90
LAR11	
SAC1	
SAC3	
SAC5	
SAC6	95
SAC7	96
SAC8	
SAC9	
SAC10	
APPENDIX 3 JET EROSION TEST DATA SHEETS	
LAR1 – test 1	
AR] – test 2	
 LAR2	
 LAR4	
LAR5 – test 1	
LAR5 – test 2	
LAR5 – test 3	
LAR8 – test 1	
LAR8 – test 2	
LAR8 – test 3	
LAR9 – test 1	
LAR9 – test 2	
LAR9 – test 3	
SAC3 – test 1	
SAC3 – test 2	
SAC3 – test 3	
SAC3 – test 4	
SAC3 – test 5	
SAC3 – test 6	
SAC7 – test 1	
SAC7 – test 2	
SAC7 – test 3	

List of Figures	
Figure 1 – Study sites on the American and Sacramento Rivers, California	2
Figure 2 – Photographs of mini-jet device used to measure soil erodibility	4
Figure 3 – Map of study site LAR1 on the American River.	7
Figure 4 – Photos of study site LAR1 on the American River: (A) bank surface, (B) view upstream, and (C) view downstream	ı8
Figure 5 – Surveyed bank profile of study site LAR1 on the American River. Graph indicates approximate location of the . water surface, and bank stratigraphy	JET, 9
Figure 6 – Photos of bank soils at study site LAR1 on the American River: (A) sandy soil at JET location and (B) sandy grave	el at
Figure $7 - IET$ analysis using the Blaisdell iterative and linear regression methods for study site IAP1 on the American Rive	
(A) test one and (B) test two. The regression equation and coefficient of determination (R ²) for the linear regression method are displayed on the graphs.	on 10
Figure 9 Man of study site LAP2 on the American Pivor	10
Figure Q — Photos of study site LAR2 on the American River. (A) hank surface. (P) view westroom, and (C) view devertee and	
Figure 10 – Surveyed bank profile of study site LAR2 on the American River. Graph indicates approximate location of the water surface, and bank stratigraphy)13 9 JET, 14
Figure 11 – Photos of bank soils at study site LAR2 on the American River: (A) sandy soil at JET location and (B) sandy gra at bank toe.	vel 15
Figure 12 – JET analysis using the Blaisdell, iterative and linear regression methods for study site LAR2 on the American Ri	ver.
The regression equation and coefficient of determination (R ²) for the linear regression method are displayed on t araph	he 15
Figure 13 – Map of study site LAR3 on the American River	16
Figure 14 – Photos of study site LAR3 on the American River: (A) frontal view of bank surface, (B) top view of bank surface view upstream, and (D) view downstream.	e, (C) 17
Figure 15 – Surveyed bank profile of study site LAR3 on the American River. Graph indicates approximate location of toe protection, water surface, and bank material.	€ 18
Figure 16 – Map of study site LAR4 on the American River.	
Figure 17 – Photos of study site LAR4 on the American River: (A) frontal view of bank surface, (B) sandy soil at JET location view upstream, and (D) view downstream.	n, (C) 20
Figure 18 – Surveyed bank profile of study site LAR4 on the American River. Graph indicates approximate location of the water surface, and bank material.) JET,
Figure 19 – JET analysis using the Blaisdell, iterative and linear regression methods for study site LAR4 on the American Ri The regression equation and coefficient of determination (R ²) for the linear regression method are displayed on t araph	ver. he 22
Figure 20 – Map of study site LAR5 on the American River	23
Figure 21 – Photos of study site LAR5 on the American River: (A) frontal view of well-vegetated toe and bank surfaces, (B) sandy soil at JET locations. (C) view upstream, and (D) view downstream) 24
Figure 22 – Surveyed bank profile of study site LAR5 on the American River. Graph indicates approximate location of the and soil sampling, water surface, and bank material.) JET 25
Figure 23 – JET analysis using the Blaisdell, iterative and linear regression methods for study site LAR5 on the American Ri (A) test one, (B) test two, and (C) test three. The regression equation and coefficient of determination (R ²) for the linear regression method are displayed on the graphs.	ver:
Figure 24 – Map of study site LAPZ on the American Piver	20 ວຊ
Figure 25 - Photos of study site LAR7 on the American River. (A) bank surface (R) view unstream and (C) view downstrea	20 m 20
Figure 26 – Surveyed bank profile of study site LAR7 on the American River. Graph indicates approximate location of the sampling water surface, and bank material	soil :
Figure 27 - Map of study site LARS on the American Piver	30 21
Figure 28 - Photos of study site LAR8 on the American River. (A) oblique view of bank surface. (B) frontal view of bank sur	rface
showing sandy soil overlain by a silty sand (C) view upstream and (D) view downstream	30
Figure 29 – Surveyed bank profile of study site LAR8 on the American River. Graph indicates approximate location of the	• IFT
water surface, and bank stratigraphy	33

Figure $30 - JET$ analysis using the Blaisdell, iterative and linear regression methods for study site LAR8 on the American River: (A) test one (B) test two and (C) test three. The regression equation and coefficient of determination (P^2) for the
(A) resi one, (b) resi two, and (c) resi twice. The regression equation and coefficient of determination (k) for the
Figure 21 Map of study site LAPQ on the American Divor
Figure 32 Photos of study site LAPO on the American Diver. (A) hank surfaces (R) view unstream and (C) view devestream 36
Figure 32 – Photos of study site LARY on the American River: (A) bank surface, (b) view opsiream, and (c) view downstream. So
Figure 55 – Surveyed bank profile of study site LAK9 on the American kiver. Graph indicates approximate location of the
JETS, water surface, and bank stratigraphy.
Figure 34 – Photos of the lower bank soil of study site LAKY on the American River on which JETs were conducted: (A) about 2
Figure 35 – JET analysis using the Blaisdell, iterative and linear regression methods for study site LAR9 on the American River: (A) test one, (B) test two, and (C) test three. The regression equation and coefficient of determination (R ²) for the linear regression method are displayed on the graphs
Figure 36 – Map of study site LAR10 on the American River
Figure 37 – Photos of study site LAR10 on the American River: (A) bank surface. (B) view upstream, and (C) view downstream.
Figure 38 – Surveyed bank profile of study site LAR10 on the American River. Graph indicates approximate location of the collected soil samples, water surface, and bank stratigraphy
Figure 39 – Map of study site LAR11 on the American River.
Figure 40 – Photos of study site LAR11 on the American River: (A) bank surface. (B) view upstream, and (C) view downstream.
Figure 41 – Surveyed bank profile of study site LAR11 on the American River. Graph indicates approximate location of the
collected soil sample, water surface, bank material, and riprap
Figure 42 – Map of study site SAC1 on the Sacramento River
Figure 43 – Photos of study site SAC1 on the Sacramento River: (A) bank surface. (B) view upstream, and (C) view
downstream
Figure 44 – Surveyed bank profile of study site SAC1 on the Sacramento River. Graph indicates approximate location of the
collected soil sample, water surface, bank material, and riprap
Figure 45 – Map of study site SAC3 on the Sacramento River
Figure 46 – Photos of study site SAC3 on the Sacramento River: (A) bank surface, (B) view upstream, and (C) view
downstream
Figure 47 – Surveyed bank profile of study site SAC3 on the Sacramento River. Graph indicates approximate locations of
JETs, water surface, and bank stratigraphy
Figure 48 – JET analysis using the Blaisdell, iterative and linear regression methods for the lower JET location at study site
SAC3 on the Sacramento River: (A) test one, (B) test two, and (C) test three. The regression equation and coefficient
of determination (R ²) for the linear regression method are displayed on the graphs
Figure 49 – JET analysis using the Blaisdell, iterative and linear regression methods for the upper JET location at study site
SAC3 on the Sacramento River: (A) test four, (B) test five, and (C) test six. The regression equation and coefficient of
determination (R ²) for the linear regression method are displayed on the graphs
Figure 50 – Map of study site SAC5 on the Sacramento River
Figure 51 – Photos of study site SAC5 on the Sacramento River: (A) bank surface, (B) view upstream, and (C) view
downstream
Figure 52 – Surveyed bank profile of study site SAC5 on the Sacramento River. Graph indicates approximate locations of
water surface and riprap bank protection
Figure 53 – Map of study site SAC6 on the Sacramento River
Figure 54 – Photos of study site SAC6 on the Sacramento River: (A) bank surface seen from bank top, (B) view upstream, and
(C) view downstream
Figure 55 – Surveyed bank profile of study site SAC6 on the Sacramento River. Graph indicates approximate locations of soil
sampling, water surface, and riprap bank protection60
Figure 56 – Map of study site SAC7 on the Sacramento River
Figure 57 – Photos of study site SAC7 on the Sacramento River: (A) frontal view of bank surface, (B) view upstream, and (C)
view downstream
Figure 58 – Surveyed bank profile of study site SAC7 on the Sacramento River. Graph indicates approximate locations of
JETS, water surface, and bank soil

Figure 59 – JET analysis using the Blaisdell, iterative and linear regression methods for study site SAC7 on the Sacramento River: (A) test one, (B) test two, and (C) test three. The regression equation and coefficient of determination (R ²) for the linear regression method are displayed on the graphs.	65
Figure 60 – Map of study site SAC8 on the Sacramento River.	66
Figure 61 – Photos of study site SAC8 on the Sacramento River: (A) frontal view of bank surface, (B) view upstream, and (C) view downstream.	67
Figure 62 – Surveyed bank profile of study site SAC8 on the Sacramento River. Graph indicates approximate locations of sample collection, water surface, and bank protection	oil 68
Figure 63 – Map of study site SAC9 on the Sacramento River	69
Figure 64 – Photos of study site SAC9 on the Sacramento River: (A) frontal view of bank surface, (B) view upstream, and (C) view downstream.	70
Figure 65 – Surveyed bank profile of study site SAC9 on the Sacramento River. Graph indicates approximate locations of water surface and bank protection	71
Figure 66 – Map of study site SAC10 on the Sacramento River	72
Figure 67 – Photos of study site SAC10 on the Sacramento River: (A) frontal view of bank surface, (B) view upstream, and (C view downstream.	:) 73
Figure 68 – Surveyed bank profile of study site SAC10 on the Sacramento River. Graph indicates approximate locations of soil sample collection, water surface, and bank protection	74

List of Tables
Table 1 – Grain-size distribution of the sandy soil at study site LAR1 on the American River
Table 2 – Measured erosion rate and applied shear stress for JETs carried out at study site LAR1 on the American River
Table 3 – Jet test results using Blaisdell, iterative and linear regression methods for study site LAR1 on the American River. Th
units of the soil detachment coefficient are cm hr ⁻¹ Pa^{-1} for display purposes. To convert to m s ⁻¹ Pa^{-1} : 1 m s ⁻¹ $Pa^{-1} =$
360,000 cm hr ⁻¹ Pa ⁻¹ 1
Table 4 – Grain-size distribution of the sandy soil at study site LAR2 on the American River 1
Table 5 – Measured erosion rate and applied shear stress for JET carried out at study site LAR2 on the American River 1
Table 6 – Jet test results using Blaisdell, iterative and linear regression methods for study site LAR2 on the American River. Th
units of the soil detachment coefficient are cm hr ⁻¹ Pa^{-1} for display purposes. To convert to m s ⁻¹ Pa^{-1} : 1 m s ⁻¹ $Pa^{-1} =$
360,000 cm hr ⁻¹ Pa ⁻¹ 1
Table 7 – Measured diameters of ten randomly selected cobbles from the bank face at study site LAR3 on the American River
۱ ۱ ۱
Table 8 – Grain-size distribution of the sandy soil at study site LAR3 on the American River.
Table 9 – Grain-size distribution of the sandy soil at study site LAR4 on the American River.
Table 10 – Measured erosion rate and applied shear stress for JET carried out at study site LAR4 on the American River 2
Table 11 – Jet fest results using Blaisdell, iterative and linear regression methods for study site LAR4 on the American River.
The units of the soil defachment coefficient are cm hr-' Pa-' for display purposes. To convert to m s-' Pa-': T m s-' Pa-'
= 300,000 cm hr ⁻¹ Pd ⁻¹
Table 12 - Grain-size distribution of the sandy soil of study site LARS on the American River. The bank face sample is listed
Table 12 Maggured eracion rate and applied share strong for JETs carried out at study site JAP5 on the American Diver 2
Table $1.4 - 1$ lot tost results using Blaidell, iterative and linear regression methods for study site LAR5 on the American Piver
The units of the soil detechment coefficient are cm hr ⁻¹ Pa ⁻¹ for display purposes. To convert to $m s^{-1} Pa^{-1} \cdot 1 m s^{-1} Pa^{-1}$
$= 360\ 000\ \text{cm}\ \text{hr}^{-1}\ \text{Pa}^{-1}$
Table 15 – Grain-size distribution of the sandy soil at study site LARZ on the American River
Table 16 – Grain-size distribution of the silty sand (upper soil layer) and sand (lower soil layer) soils at study site LAR8 on the
American River. The silty sand sample is listed on the top row, whereas the sand sample is listed on the bottom row.
Table 17 – Measured erosion rate and applied shear stress for JETs carried out at study site LAR8 on the American River 2
Table 18 – Jet test results using Blaisdell, iterative and linear regression methods for study site LAR8 on the American River.
The units of the soil detachment coefficient are cm hr ⁻¹ Pa ⁻¹ for display purposes. To convert to m s ⁻¹ Pa ⁻¹ : 1 m s ⁻¹ Pa ⁻¹
= 360,000 cm hr ⁻¹ Pa ⁻¹
Table 19 – Grain-size distribution of the sandy silt (upper soil layer) and silty sand (lower soil layer/bank toe) soils at study
site LAR9 on the American River. The sandy silt sample is listed on the top row, whereas the two silty sand samples
are listed on the bottom two rows
Table 20 – Measured erosion rate and applied shear stress for JETs carried out at study site LAR9 on the American River 3
Table 21 – Jet test results using Blaisdell, iterative and linear regression methods for study site LAR9 on the American River.
The units of the soil detachment coefficient are cm hr-1 Pa-1 for display purposes. To convert to m s-1 Pa-1: 1 m s-1 Pa-
$= 360,000 \text{ cm } \text{hr}^{-1} \text{ Pa}^{-1} \dots 3$
Table 22 – Grain-size distributions of the mid-bank (top row) and bank toe (bottom row) soils at study site LARIU on the
American River
Table 23 – Grain-size distribution of the denocited bank material at study site LAKIT on the American River
Table 25 – Grain-size distributions of the silty cand (upper bank face, top row), candy silt (lower bank face, middle row), and
sandy (bank top, bottom row) soils at study site SAC3 on the Sacramento Piver
Table 26 – Measured erosion rate and applied shear stress for IETs carried out on the lower IET location at study site SAC3
on the Sacramento River
Table 27 – Jet test results using Blaisdell, iterative and linear regression methods for study site SAC3 on the Sacramento River
The units of the soil detachment coefficient are cm hr ⁻¹ Pa ⁻¹ for display purposes. To convert to m s ⁻¹ Pa ⁻¹ : 1 m s ⁻¹ Pa ⁻¹
$= 360,000 \text{ cm } hr^{-1} Pa^{-1}$
Table 28 – Measured erosion rate and applied shear stress for JETs carried out on the upper JET location at study site SAC3
on the Sacramento River

Table 29 – Grain-size distribution of bank material at study site SAC6 on the Sacramento River
Table 30 – Grain-size distributions of bank (top row) and point-bar (bottom row) materials at study site SAC7 on the
Sacramento River
Table 31 – Measured erosion rate and applied shear stress for JETs carried out on the lower JET location at study site SAC7
on the Sacramento River
Table 32 – Jet test results using Blaisdell, iterative and linear regression methods for study site SAC7 on the Sacramento River.
The units of the soil detachment coefficient are cm hr-1 Pa-1 for display purposes. To convert to m s-1 Pa-1: 1 m s-1 Pa-1
= 360,000 cm hr ⁻¹ Pa ⁻¹
Table 33 – Grain-size distribution of deposited bank material at study site SAC8 on the Sacramento River
Table 34 – Grain-size distribution of deposited bank material at study site SAC10 on the Sacramento River71

List of Abbreviations and Units

ARS	Agricultural Research Service
ASTM	American Society of Testing Materials
BSTEM	Bank Stability and Toe Erosion Model
C_d	diffusion coefficient; dimensionless
$\tilde{C_f}$	friction coefficient; dimensionless
ĆONCEPTS	CONservational Channel Evolution and Transport System
d	nozzle diameter; m
D	particle diameter; mm
Ε	erosion rate; m s ⁻¹
GPS	Global Positioning System
q	acceleration due to gravity; 9.81 m s ⁻²
В Н	pressure head at nozzle; m
HEC-RAS	Hydrologic Engineering Center River Analysis System
JET	Jet Erosion Test
k _d	soil detachment coefficient; m s ⁻¹ Pa ⁻¹
L	distance between nozzle and scour hole bottom; m
LAR	Lower American River
MASL	Meters Above mean Sea Level
NRCS	Natural Resources Conservation Service
NGS	National Geodetic Survey
NSL	National Sedimentation Laboratory
OPUS	Online Position User Service
OSHA	Occupational Safety and Health Administration
RTK GPS	Real-Time Kinematic Global Positioning System
SAC	Sacramento River
SPK	U.S. Army Corps of Engineers, Sacramento District
SRH-2D	Sedimentation and River Hydraulics Two-Dimensional model
t	time; s
TBM	Temporary BenchMark
U ₀	jet centerline velocity at the nozzle; m s ⁻¹
USACE	U.S. Army Corps of Engineers
USCS	Unified Soil Classification System
USDA	U.S. Department of Agriculture
WRDA	Water Resources Development Act
ρ	density of water; kg m ⁻³
τ	boundary (bed or bank) shear stress; Pa.
$ au_c$	critical shear stress; Pa
ϕ	Negative base 2 logarithm of particle diameter; dimensionless

Conversion Factors

Multiply	Ву	To obtain
	Length	
millimeter (mm)	0.03937	inch (in)
meter (m)	3.281	foot (ft)
kilometer (km)	0.6214	mile (mi)
	Area	
square motor (m ²)	10 764	square feet (ft2)
square kilometer (km ²)	0.3861	square mile (m ²)
square knometer (km)	0.3001	
	Volume	
cubic meter (m ³)	35.31	cubic foot (ft ³)
	Flow	
meter per second (m s ⁻¹)	3.281	foot per second (ft s ⁻¹)
cubic meter per second (m ³ s ⁻¹)	35.31	cubic foot per second ($ft^3 s^{-1}$)
······ p······ (·····)		
	Erosion rate	
meter per second (m s ⁻¹)	11,811	foot per hour (ft hr-1)
millimeter per minute (mm min ⁻¹)	0.1969	foot per hour (ft hr-1)
	Mass	
gram (g)	0.03527	ounce (oz)
kilogram (kg)	2.205	pound (lb)
tonne, metric	1.102	ton (short)
metric tonne per square kilometer per year (ton km ⁻¹ yr ⁻¹)	2.855	ton (short) per square mile per year (ton mi ⁻²
		yr-1)
	Force per unit	
	length	
kilonewton per meter (kN m ⁻¹)	5.710	pound-force per inch (lbf in-1)
kilonewton per meter (kN m ⁻¹)	68.52	pound-force per foot (lbf ft-1)
	Strong	
narcal (Pa)	0 0 0 0 0 0 0 0	nound force per cause feet (lbf ft-2)
$(= nowton nor course mater N m^2)$	0.02087	
(- newion per square merer, 11 m-)	0145	nound force per square inch (lbf in-2)
kilopassal (kPa)	20.89	pound force per square fact (lbf ft-2)
kilopäseai (ki a)	20.07	
	Density	
gram per cubic centimeter (g cm-3)	62.43	pound per cubic foot (lb ft ⁻³)
	I Init waight	
kilonoviton por subis motor (kNI m-3)		nound force per subic feet (lbf ft-3)
kilonewion per cubic meter (kin m ⁻³)	0.300	
	Erodibility	
cubic centimeter per newton second (cm ³ N ⁻¹ s ⁻¹)	0.5655	cubic foot per pound-force hour (ft ³ lbf ⁻¹ hr ⁻¹)
centimeter per pascal hour (cm Pa ⁻¹ hr ⁻¹)	1.571	cubic foot per pound-force hour (ft ³ lbf ⁻¹ hr ⁻¹)
meter per pascal second (m Pa ⁻¹ s ⁻¹)	157.1	cubic foot per pound-force second (ft ³ lbf ⁻¹ s ⁻¹)

INTRODUCTION

Problem statement

The Lower American River (LAR) below Folsom Dam consists of approximately 30 miles of alluvial channel that meanders through Sacramento and other communities in northern California. Bank erosion has been a documented concern through 11 miles of this reach due to the proximity of the fluvial system to the engineered levees and the high population densities that live on the landside of the levees. There are also about 25 miles of levees (river left) along the Sacramento River (SAC) that could be adversely affected by bank erosion. The Water Resources Development Act (WRDA) of 2016 provides for engineering and design activities associated with implementing projects to reduce the flood risk on the LAR and the SAC (USACE, 2016). Quantification of bank erosion extent and erosion potential on the LAR and SAC is an important task, both to ensure that the designed bank protection is adequate and for prioritizing the bank protection work. Isolating areas prone to erosion will ensure that areas of higher risk for bank erosion are addressed first.

Bank erosion occurs as a result of the interaction of two processes, hydraulic and geotechnical (Langendoen & Simon, 2008). The hydraulic process involves the ability of the applied erosive forces from the water to erode the bank material, or fluvial erosion. This requires knowing hydraulic properties such as water depth, energy slope, and the hydraulic radius and bank material properties, such as soil composition (layers and type), the critical shear stress, and erodibility coefficient. The geotechnical process requires insight into the strength of the soil to resist mass instabilities, or mass wasting. This requires knowing groundwater elevations and bank material properties, such as effective cohesion, friction angle, pore water pressure, soil gradations, water content, and bulk density. Of these parameters, knowledge of the soil composition (layers and type) and bank erosion resistance properties (critical shear stress and the erodibility coefficient) have been determined to be the most important parameters in estimating long term bank erosion risk on the LAR and SAC.

The United States Army Corps of Engineers (USACE) has requested the United States Department of Agriculture (USDA), Agriculture Research Service (ARS), National Sedimentation Laboratory (NSL), Oxford, Mississippi to characterize the resistance-to-fluvial-erosion properties of LAR and SAC bank soils to better evaluate the range of these parameters and the associated uncertainty in their measurements.

Objective

This study's objective is to determine:

- 1. Bank geometry and soil stratigraphy at up to 10 sites (20 total) on both the Lower American and Sacramento Rivers.
- 2. The resistance-to-fluvial-erosion of the soils located on these sites using jet-erosion-test (JET) technology developed by ARS.

These data will be used to derive probability density functions of erosion-resistance properties by USACE for input into the BSTEM Dynamic v3 stochastic bank erosion model.

Study area

The geographic scope of the reported work is a 10-mi long reach on the American River and a 15-mi long reach on the Sacramento River adjacent to the City of Sacramento, California (Figure 1). The U.S. Army Corps of Engineers, Sacramento District (SPK), selected 10 study sites on the Lower American River (LAR1, LAR2, LAR3, LAR4, LAR5, LAR7, LAR8, LAR9, LAR10, and LAR11) and 8 study sites on the Sacramento River (SAC1, SAC3, SAC5, SAC6, SAC7, SAC8, SAC9, and SAC10). At each site the goal was to: (1) survey the bank profile; (2) identify the bank soil stratigraphy; and (3) measure the bank-soil properties resistance-to-fluvial-erosion, bulk density, and grain-size distribution. Note, abundant vegetation, bank protection measures, or steep banks prevented the measurement of bank-soil properties at several sites. In addition to the above-mentioned study sites, bank-material samples were collected at site SAC55 for grain-size and soil density analysis only.

Erodibility of Bank Materials on the Lower American and Sacramento Rivers, adjacent to the City of Sacramento, California

FIGURE 1 - STUDY SITES ON THE AMERICAN AND SACRAMENTO RIVERS, CALIFORNIA.

METHODS AND MATERIALS

Overview

Erosion of fine-grained (cohesive) bank materials is a combination of scour by the flowing water and bank collapse. Fluvial erosion of fine-grained materials is controlled by the hydraulic shear acting on the bank soils and the erodibility of these soils. The soil erodibility itself depends on various soil chemical, hydrologic, and physical properties. The bank soil erodibility in this study was determined using Jet Erosion Test (JET) methodology. In addition to bank soil erodibility measurements, bank soil samples were collected to determine soil texture (grain size distribution) and dry density. Bank collapse occurs when gravitational forces (weight of the bank soils) exceed the shear strength of the bank soils. The weight of a potential failure block is, among others, controlled by the bank profile. At each study site, the bank profile was surveyed using a combination of real-time kinematic global positioning system (RTK GPS) and total station survey methods. The following sections describe the measurement and data collection methods.

Soil erodibility

The detachment of particles (that is, grains and aggregates of different sizes) from cohesive bank materials is extremely complex because of electro-chemical bonds between such particles. Ariathurai & Arulanandan (1978) showed that the rate of erosion, E, of cohesive materials can be predicted by an excess shear stress equation:

$$E = \begin{cases} k_d(\tau - \tau_c) & \tau > \tau_c \\ 0 & \tau \le \tau_c \end{cases}$$
(1)

where E is erosion rate (m s⁻¹ or ft hr⁻¹), τ is boundary shear stress exerted by flowing water (Pa or lbf ft⁻²), τ_c is critical shear stress (Pa or lbf ft⁻²), and k_d is soil detachment coefficient (m s⁻¹ Pa⁻¹ or ft³ lbf⁻¹ hr⁻¹) representing the volume of material eroded per unit force and per unit time.

The bank erosion modules of the ARS CONservational Channel Evolution and Pollutant Transport System (CONCEPTS; Langendoen & Alonso, 2008; Langendoen & Simon, 2008) and Bank Stability and Toe Erosion Model (BSTEM; Simon, Pollen-Bankhead, & Thomas, 2011) use Eq. (1) to calculate the rate of fluvial erosion. These modules are also used by river morphologic models such as RVR Meander (Motta, Abad, Langendoen, & Garcia, 2012), HEC-RAS v5 (Brunner, 2016), and SRH-2D (Lai, et al., 2015).

Eq. (1) requires the soil parameters critical shear stress and detachment coefficient as input. ARS has developed a submerged jet erosion test device for testing the *in situ* erodibility of surface materials in the laboratory and in the field (Hanson G., 1990).

Jet erosion test (JET)

The JETs were performed in situ using a mini jet-test device (Figure 2). The mini-jet apparatus consists of an electric submersible 1050 GPH pump powered by a portable A/C generator that provides a head of water (H) measured by a pressure gage, a scaled-down 0.15 m-diameter submergence tank with an integrated, rotatable 3.18 mm-diameter nozzle and depth gauge, and delivery hoses. A sample is centered under the nozzle, where the jet originates, and submerged within the cylindrical tank. The initial height of the nozzle above the sample is noted and can be adjusted prior to initiating a test. Changes in maximum scour are measured using a point gauge at specific time increments and an asymptotic regression fitted to the erosion curve to calculate an initial point of entrainment, or material critical shear stress. The head and the initial height of the nozzle above the sample determine the applied shear stress during the test.

The device and procedure have been developed based on knowledge of the hydraulic characteristics of a submerged jet and the corresponding scour produced by the jet. The maximum shear stress acting on the sample surface for a given distance to the nozzle (L) is:

$$\tau = \rho C_f \left(\frac{C_d U_0 d}{L}\right)^2 \tag{2}$$

where ρ is fluid density (kg m⁻³), C_f is friction coefficient, C_d is diffusion coefficient, U_0 is jet centerline velocity at the nozzle (m s⁻¹), and d is nozzle diameter (m). The coefficients $C_f = 0.00416$ and $C_d = 6.3$ were experimentally determined (Hanson, Robinson, & Temple, 1990). The velocity $U_0 = \sqrt{2gH}$, where g is gravitational acceleration (m s⁻²) and H is pressure head (m) at the nozzle. The nozzle diameter of the JET test device used was 3.18 mm.

Fitting the measured scour depth evolution to the logarithmic-hyperbolic method to determine equilibrium (final) scour depth described in Hanson & Cook (2004) establishes τ_c . The soil detachment coefficient k_d is then determined by curve fitting measured values of scour depth versus time to the parametrized scour depth function. This procedure to determine τ_c and k_d is known as the Blaisdell method. Two additional methods were used to determine τ_c and k_d : Iterative method and Linear regression method. The Iterative method initially uses the Blaisdell method to estimate τ_c and k_d , but then iteratively updates τ_c and k_d to minimize the error of the parametrized scour depth function (Simon, Thomas, & Klimetz, 2010). The Linear regression method fits a linear trendline through the measured pairs of (τ ,E) points, where $E = \Delta L/\Delta t$ with ΔL the increase in scour depth over a time increment Δt .

FIGURE 2 – PHOTOGRAPHS OF MINI-JET DEVICE USED TO MEASURE SOIL ERODIBILITY.

Soil grain size distribution, bulk density, and type

The procedure for grain size analysis at NSL combines American Society of Testing Materials (ASTM) Standard D6913 (ASTM, 2017c) for coarse materials (> 2 mm) and USDA, NRCS Soil Survey Method 3A1a1 (Soil Survey Staff, 2014) for fine materials (< 2 mm). Sediment samples for particle size distributions were oven dried at 105 °C for 24 hrs. The total mass of the sample was then passed through a 2 mm sieve to remove gravels from the sand and finer fractions. The gravel sample mass was sieved separately with sieves at half- ϕ scale, that is with sizes (in mm): 64, 45.3, 32, 22.6, 16, 11.3, 8, 5.66, 4, 2.83, and 2. Sample mass finer than 2 mm was subsampled to a target mass of 10 g, dispersed, and wet sieved through a 0.063 mm sieve to separate sands from silts and clays. The sand fraction was dried, disaggregated with mortar and pestle, and sieved using sieve sizes (in mm): 1.41, 0.5, 0.354, 0.25, 0.178, 0.125, 0.088, and 0.063. The pan remains (< 0.063 mm) were combined with the fines from wet sieving, pipetted to determine size breaks for fine silt (< 0.025 mm), coarse silt (> 0.002 mm). Bulk density samples were collected in aluminum rings pressed normal to the surface,

excavated, cleaned, weighed, oven dried at 105 °C for 24 hrs, then reweighed. Unified Soil Classification System (USCS) soil types were determined according to ASTM Standard D2487 (ASTM, 2017a) by using MATLAB code 'Soil Classification Based on Unified Soil Classification System' (Dedement, 2020). USCS classification results from the MATLAB code were spot checked for accuracy. Atterberg Limits were determined only for samples with greater than 50% silt and clay (< 0.063 mm) according to ASTM Standard D4318 (ASTM, 2017b) utilizing the dry preparation method.

Bank profile geometry

Surveys were conducted with a Topcon GR3 survey grade RTK GPS and/or a Topcon GPT 7500 total station. Methodology for surveying efforts were site specific due to tree cover, RTK interference, and the presence or lack thereof previously established control pins. Surveys were georeferenced or corrected through GPS static sessions since pin coordinates for previously established control points were mostly unavailable. Static sessions are used to determine a corrected base location utilizing the Online Position User Service (OPUS) by the National Geodetic Survey (NGS). Accuracy of the static session is determined by the length of time data is collected and the amount of data that is used to determine the OPUS solution. Each static session conducted for surveying efforts was collected for a minimum of 30 minutes. Ideally, static sessions would have been collected for at least two hours but given time constraints and difficulties encountered in the field, 30-minute static sessions were deemed most prudent. Two pins (0.5 inch x 2 ft rebar) or temporary benchmarks (TBMs) were placed and surveyed at each site. Coordinate accuracy of surveys could possibly be improved beyond OPUS solutions with better TBM coordinates determined by other survey methods. If previously established control points were found at a location, and were in the line of sight of the cross section, then the control point was used in lieu of the placement of a TBM. OSHA approved rebar covers were put on all pins placed by the NSL.

Upon site arrival, a TBM was hammered into the ground at a location where line of sight to the required cross section profile was available and where minimum tree cover was present. The RTK GPS base station was then aligned over the TBM with the instrument height determined from the top of the rebar to the Antenna Reference Point. A static session was then initiated for the base location. Once the base location was collecting data, efforts were made to test for RTK interference. If no interference was present, the complete survey was conducted with the RTK GPS only. The second TBM was surveyed at these locations and corrected coordinates determined from the one static session. Sites where no interference existed and the complete survey was conducted using RTK GPS were as follows: LAR5, LAR8, LAR9, LAR10, LAR11, SAC3, SAC5, SAC6, SAC7, SAC8, and SAC10. If RTK interference was present at a given site, then a total station survey was required to determine bank profiles. Total station surveys were collected in an arbitrary coordinate system and later transformed to the reference coordinate system based on static sessions collected over each TBM. Site locations where RTK interference existed and total station surveys were required were as follows: LAR1, LAR2, LAR3, LAR4, LAR7, and SAC1. A total station survey was also conducted at SAC9 but two static sessions were not collected at this site. A pin was found at SAC9 that was thought to correspond to a benchmark established by the City of Sacramento and was used in lieu of a second TBM static session. It was later determined that the pin was not in the Sacramento database and efforts were made in post processing to generalize the direction of this cross section. Vertical control at SAC9 was established using the OPUS solution for the one TBM placed at this site. All survey post processing was conducted with the Topcon software Magnet Tools.

MEASURED DATA

Overview

This section presents the results by study site of the surveying, soil sampling, and JET test analysis on select stream banks of the Lower American and Sacramento Rivers at the City of Sacramento, California. Tables summarizing the measured data are found in appendix 'Appendix 1 Data Tables.' At each study site notes were taken describing the bank conditions and bank profile. Appendix 'Appendix 2 Notes' presents scanned copies of the notes. Appendix 'Appendix 3 Jet Erosion Test data sheets' presents scanned copies of the JET data sheets.

Study site LAR1

Study site LAR1 is located at latitude 38.57° N and longitude 121.37° W, on the left bank of the American River (Figure 3). Notes describing the study site are found on page 80. Figure 4 shows photos of the bank face and upstream and downstream views. Two JETs were conducted at this site on a relatively flat area about 2.5 meters above the water line. Soil samples were collected at the JET location after completion of the JETs for grain-size and bulk density analyses.

The surveyed bank profile is shown in Figure 5. Bank stratigraphy comprises two soils. The bottom soil consists of a sandy gravel (Figure 6B), which is overlain by a sandy soil (Figure 6A). The bank soil transition is located at about 7.8 meter above mean sea level (MASL). Table 1 lists the grain-size distribution of the sandy soil sample. The texture of the soil is 7.79% clay, 10.9% silt, and 81.3% sand, and has a USCS classification of SM (silty sand). The measured dry density and saturated unit weight of the sandy soil are 1.06 g cm⁻³ and 16.3 kN m⁻³, respectively.

The two JETs were conducted at a pressure head of 0.39 m and 0.25 m, which resulted in maximum initial applied shear stresses of 16.3 Pa and 9.8 Pa, respectively. Table 2 lists the measured erosion rate and shear stress time series during the two tests. Figure 7 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 3 lists the derived fluvial erosion-resistance parameters τ_c and k_d .

						Diameter	(<i>D</i>) in mi	llimeters					
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
Phi scale, $oldsymbol{\phi} = - \mathrm{log}_2 D$													
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	7.79	12.6	18.7	42.3	88.0	99.8	100	100	100	100	100	100	100

TABLE 1 - GRAIN-SIZE DISTRIBUTION OF THE SANDY SOIL AT STUDY SITE LAR1 ON THE AMERICAN RIVER.

Study site LAR2

Study site LAR2 is located at latitude 38.57° N and longitude 121.38° W, on the right bank of the American River (Figure 8). Notes describing the study site are found on page 81. Figure 9 shows photos of the bank face and upstream and downstream views. One JET was conducted at this site on a relatively flat area about 2.3 meters above the water line. Soil samples were collected at the JET location after completion of the JET for grain-size and bulk density analyses.

The surveyed bank profile is shown in Figure 10. Bank stratigraphy comprises two soils. The bottom soil consists of a sandy gravel (Figure 11B), which is overlain by a sandy soil (Figure 6A). The bank soil transition is located at about 8.3 MASL. Table 4 lists the grain-size distribution of the sandy soil sample. The texture of the soil is 9.54% clay, 13.3% silt, and 77.2% sand, and has a USCS classification of SM (silty sand). The measured dry density and saturated unit weight of the sandy soil are 1.18 g cm⁻³ and 17.1 kN m⁻³, respectively.

The JET was conducted at a pressure head of 0.35 m, which resulted in a maximum initial applied shear stress of 10.3 Pa. Table 5 lists the measured erosion rate and shear stress time series during the test. Figure 12 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 6 lists the derived fluvial erosion-resistance parameters τ_c and k_d .

FIGURE 3 - MAP OF STUDY SITE LAR1 ON THE AMERICAN RIVER.

FIGURE 4 – PHOTOS OF STUDY SITE LAR1 ON THE AMERICAN RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

Study site LAR3

Study site LAR3 is located at latitude 38.57° N and longitude 121.39° W, on the right bank of the American River (Figure 13). Notes describing the study site are found on page 82. Figure 14 shows photos of the bank face and upstream and downstream views. Figure 14C shows the presence of toe protection consisting of cobbles at this site. JETs could not be carried out at this site because of the steepness of the bank and the bank material comprised of cobbly sand (Figure 14A). The bank material was too loose to collect a soil sample for bulk density analysis. A soil sample for grain-size analysis was collected from the upper bank face.

The surveyed bank profile is shown in Figure 15. As far as could be observed visually, bank stratigraphy comprises a single soil, which is a mixture of sand and cobbles. Cobble density is approximately 15 cobbles per square meter. Table 7 lists the largest and smallest diameters of 10 randomly selected cobbles. Table 8 lists the grain-size distribution of the sandy soil sample. The texture of the soil is 10.3% clay, 30.2% silt, and 59.5% sand, and has a USCS classification of SM (silty sand).

FIGURE 5 – SURVEYED BANK PROFILE OF STUDY SITE LAR1 ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE JET, WATER SURFACE, AND BANK STRATIGRAPHY.

	Time	Scour depth	Shear stress	E rosion rate	
Test	(min)	(mm)	(Pa)	(mm min ⁻¹)	
1	0	0	-	-	
	0.5	4.0	16.3	8.0	
	1	5.0	14.2	0.67	
	2	5.0	12.3	0	
	4	8.0	11.4	0.4	
	6	8.5	8.5 10.4		
	10	9.0	10.2	0.0213	
2	0	0	-	-	
	0.5	7.0	9.8	14.0	
	1	12.0	7.3	10.0	
	1.5	16.0	5.1	8.0	
	2	17.0	4.6	2.0	
	3	17.0	4.6	0.0	
	5	26.0	3.85	4.5	
	7	28.0	3.2	1.0	
	10	32.0	2.9	1.33	

TABLE 2 - MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JETS CARRIED OUT AT STUDY SITE LAR1 ON THE AMERICAN RIVER.

FIGURE 6 – PHOTOS OF BANK SOILS AT STUDY SITE LAR1 ON THE AMERICAN RIVER: (A) SANDY SOIL AT JET LOCATION AND (B) SANDY GRAVEL AT BANK TOE.

FIGURE 7 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR1 ON THE AMERICAN RIVER: (A) TEST ONE AND (B) TEST TWO. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPHS.

TABLE 3 – JET TEST RESULTS USING BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR1 ON THE AMERICAN RIVER. THE UNITS OF THE SOIL DETACHMENT COEFFICIENT ARE CM HR⁻¹ PA⁻¹ FOR DISPLAY PURPOSES. TO CONVERT TO M S⁻¹ PA⁻¹: 1 M S⁻¹ PA⁻¹ = 360,000 CM HR⁻¹ PA⁻¹.

	C	ritical shear s	stress	Soil detachment coefficient			
		(Pa)	(Pa) (cm hr-1 Pa-1)				
Test	Blaisdell	lterative	Regression	Blaisdell	lterative	Regression	
1	3.74	10.0	10.1	0.951	5.42	0.835	
2	0.075	2.33	2.57	5.19	12.0	11.9	

TABLE 4 – GRAIN-SIZE DISTRIBUTION OF THE SANDY SOIL AT STUDY SITE LAR2 ON THE AMERICAN RIVER.

	Diameter (D) in millimeters												
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
	Phi scale, $\phi = - \mathrm{log}_2 D$												
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	9.54	16.7	22.8	40.7	81.6	98.6	99.9	100	100	100	100	100	100

TABLE 5 - MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JET CARRIED OUT AT STUDY SITE LAR2 ON THE AMERICAN RIVER.

	Time	Scour depth	Shear stress	Erosion rate
Test	(min)	(mm)	(Pa)	(mm min-1)
1	0	0	-	-
	0.5	18.0	10.3	36.0
	1	20.5	6.81	5.0
	2	25.0	4.20	4.5
	3	26.5	3.82	1.5
	5	36.0	3.27	4.75
	7	38.0	2.78	1.0
	12	45.0	2.49	1.4

TABLE 6 – JET TEST RESULTS USING BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR2 ON THE AMERICAN RIVER. THE UNITS OF THE SOIL DETACHMENT COEFFICIENT ARE CM HR⁻¹ PA⁻¹ FOR DISPLAY PURPOSES. TO CONVERT TO M S⁻¹ PA⁻¹: 1 M S⁻¹ PA⁻¹ = 360,000 CM HR⁻¹ PA⁻¹.

	C	ritical shear s	stress	Soil detachment coefficient					
		(Pa)		(cm hr-1 Pa-1)					
Test	Blaisdell	Blaisdell Iterative		Blaisdell	lterative	Regression			
1	0.139	2.05	2.05	7.42	18.0	8.73			

FIGURE 8 - MAP OF STUDY SITE LAR2 ON THE AMERICAN RIVER.

FIGURE 9 - PHOTOS OF STUDY SITE LAR2 ON THE AMERICAN RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

	Smallest diameter	Largest diameter			
Cobble	(cm)	(cm)			
1	7	16			
2	7	15			
3	10	18			
4	6	20			
5	10	18			
6	4.5	12			
7	9	22			
8	11	21			
9	4	11			
10	12	25			

TABLE 7 - MEASURED DIAMETERS OF TEN RANDOMLY SELECTED COBBLES FROM THE BANK FACE AT STUDY SITE LAR3 ON THE AMERICAN RIVER.

FIGURE 10 – SURVEYED BANK PROFILE OF STUDY SITE LAR2 ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE JET, WATER SURFACE, AND BANK STRATIGRAPHY.

Study site LAR4

Study site LAR4 is located at latitude 38.56° N and longitude 121.41° W, on the right bank of the American River (Figure 16). Notes describing the study site are found on page 83. Figure 17 shows photos of the bank face and upstream and downstream views. At this site one JET was conducted on a relatively flat area about 2.3 meters above the water line. Soil samples were collected at the JET location after completion of the JET for grain-size and bulk density analyses.

The surveyed bank profile is shown in Figure 18. The bank material comprises a single soil (Figure 17B). Table 9 lists the grain-size distribution of the sandy soil sample. The texture of the soil is 8.8% clay, 14.2% silt, and 77.0% sand, and has a USCS classification of SM (silty sand). On opening of the bulk density sample, the soil fell apart preventing an accurate measurement of dry density and saturated unit weight (0.76 g cm⁻³ and 14.5 kN m⁻³, respectively).

The JET was conducted at a pressure head of 0.35 m, which resulted in a maximum initial applied shear stress of 12.1 Pa. Table 10 lists the measured erosion rate and shear stress time series during the test. Figure 19 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 11 lists the derived fluvial erosion-resistance parameters τ_c and k_d .

FIGURE 11 – PHOTOS OF BANK SOILS AT STUDY SITE LAR2 ON THE AMERICAN RIVER: (A) SANDY SOIL AT JET LOCATION AND (B) SANDY GRAVEL AT BANK TOE.

FIGURE 12 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR2 ON THE AMERICAN RIVER. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPH.

FIGURE 13 - MAP OF STUDY SITE LAR3 ON THE AMERICAN RIVER.

FIGURE 14 – PHOTOS OF STUDY SITE LAR3 ON THE AMERICAN RIVER: (A) FRONTAL VIEW OF BANK SURFACE, (B) TOP VIEW OF BANK SURFACE, (C) VIEW UPSTREAM, AND (D) VIEW DOWNSTREAM.

FIGURE 15 – SURVEYED BANK PROFILE OF STUDY SITE LAR3 ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF TOE PROTECTION, WATER SURFACE, AND BANK MATERIAL.

	Diameter (D) in millimeters												
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
	Phi scale, $oldsymbol{\phi} = - \mathrm{log}_2 D$												
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	10.3	23.9	40.5	72.0	96.1	99.8	100	100	100	100	100	100	100

	Diameter (<i>D</i>) in millimeters												
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
	Phi scale, $oldsymbol{\phi} = - \mathrm{log}_2 D$												
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	8.80	15.2	23.0	47.4	86.9	99.1	99.8	100	100	100	100	100	100

FIGURE 16 - MAP OF STUDY SITE LAR4 ON THE AMERICAN RIVER.

FIGURE 17 – PHOTOS OF STUDY SITE LAR4 ON THE AMERICAN RIVER: (A) FRONTAL VIEW OF BANK SURFACE, (B) SANDY SOIL AT JET LOCATION, (C) VIEW UPSTREAM, AND (D) VIEW DOWNSTREAM.

FIGURE 18 – SURVEYED BANK PROFILE OF STUDY SITE LAR4 ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE JET, WATER SURFACE, AND BANK MATERIAL.

	Time	Scour depth	Shear stress	Erosion rate
Test	(min)	(mm)	(Pa)	(mm min ⁻¹)
1	0	0	-	-
	0.5	2.5	12.1	5.0
	1	4.0	10.9	3.0
	2	6.0	9.36	2.0
	4	9.0	8.34	1.5
	8	11.0	7.47	0.5
	12	12.5	6.95	0.375
	20	14.0	6.54	0.188

TABLE 10 - MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JET CARRIED OUT AT STUDY SITE LAR4 ON THE AMERICAN RIVER.

TABLE 11 – JET TEST RESULTS USING BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR4 ON THE AMERICAN RIVER. THE UNITS OF THE SOIL DETACHMENT COEFFICIENT ARE CM HR⁻¹ PA⁻¹ FOR DISPLAY PURPOSES. TO CONVERT TO M S⁻¹ PA⁻¹: 1 M S⁻¹ PA⁻¹ = 360,000 CM HR⁻¹ PA⁻¹.

	C	ritical shear s	stress	Soil detachment coefficient				
		(Pa)		(cm hr-1 Pa-1)				
Test	Blaisdell	lterative	Regression	Blaisdell	lterative	Regression		
1	1.28	6.21	6.38	0.822	3.53	4.03		

FIGURE 19 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR4 ON THE AMERICAN RIVER. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPH.

Study site LAR5

Study site LAR5 is located at latitude 38.56° N and longitude 121.42° W, on the right bank of the American River (Figure 20). Notes describing the study site are found on page 84. Figure 21 shows photos of the bank face and upstream and downstream views. Three JETs were conducted at this site on a relatively flat toe near the water line. Soil samples were collected from the lower portion of the bank face (above flat toe area) and at the JET location after completion of the JETs for grain-size and bulk density analyses.

The surveyed bank profile is shown in Figure 22. The bank material comprises a single soil (Figure 21B). Table 12 lists the grain-size distribution of the sandy soil samples collected at the bank toe near the water line and at the bank face. The texture of the soil is on average 6.64% clay, 5.81% silt, and 87.6% sand, and has a USCS classification of SM (silty sand). The measured dry density and saturated unit weight of the sandy soil on the bank face are 1.24 g cm⁻³ and 17.5 kN m⁻³, respectively. The measured dry density and saturated unit weight of the sandy soil on the bank toe are 1.23 g cm⁻³ and 17.4 kN m⁻³, respectively.

The three JETs were conducted at a pressure head of 0.70 m, 0.18 m and 0.18 m, which resulted in maximum initial applied shear stresses of 26.2 Pa, 9.73 Pa, and 9.73 Pa, respectively. Table 13 lists the measured erosion rate and shear stress time series during the three tests. Figure 23 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 14 lists the derived fluvial erosion-resistance parameters τ_c and k_d .

						Diameter	(<i>D</i>) in mi	illimeters					
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
						Phi sca	le, $\phi = -$	log ₂ D					
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	6.75	9.32	11.8	25.1	83.6	99.8	100	100	100	100	100	100	100
%Finer	6.53	9.91	13.1	31.3	80.4	99.7	100	100	100	100	100	100	100

TABLE 12 – GRAIN-SIZE DISTRIBUTION OF THE SANDY SOIL AT STUDY SITE LAR5 ON THE AMERICAN RIVER. THE BANK FACE SAMPLE IS LISTED ON THE TOP ROW, WHEREAS THE BANK TOE SAMPLE IS LISTED ON THE BOTTOM ROW.

FIGURE 20 - MAP OF STUDY SITE LAR5 ON THE AMERICAN RIVER.

FIGURE 21 – PHOTOS OF STUDY SITE LAR5 ON THE AMERICAN RIVER: (A) FRONTAL VIEW OF WELL-VEGETATED TOE AND BANK SURFACES, (B) SANDY SOIL AT JET LOCATIONS, (C) VIEW UPSTREAM, AND (D) VIEW DOWNSTREAM.

FIGURE 22 – SURVEYED BANK PROFILE OF STUDY SITE LAR5 ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE JET AND SOIL SAMPLING, WATER SURFACE, AND BANK MATERIAL.

	Time	Scour depth	Shear stress	Erosion rate
Test	(min)	(mm)	(Pa)	(mm min ⁻¹)
1	0	0	-	-
	0.5	12.0	26.2	24.0
	1	25.0	14.9	26.0
	1.5	27.0	8.21	4.0
	2.5	28.0	7.80	1.0
	4	28.0	7.68	0
2	0	0	-	-
	0.5	8.0	9.73	16.0
	1	8.0	7.78	0
	2	8.5	6.15	0.5
	4	8.5	6.07	0
3	0	0	-	-
	0.5	22.0	9.73	44.0
	1	30.0	5.02	16.0
	2	43.0	2.14	13.0
	3	46.0	1.70	3.0
	5	57.0	1.44	5.5

TABLE 13 - MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JETS CARRIED OUT AT STUDY SITE LAR5 ON THE AMERICAN RIVER.

FIGURE 23 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR5 ON THE AMERICAN RIVER: (A) TEST ONE, (B) TEST TWO, AND (C) TEST THREE. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPHS.

TABLE 14 – JET TEST RESULTS USING BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR5 ON THE AMERICAN RIVER. THE UNITS OF THE SOIL DETACHMENT COEFFICIENT ARE CM HR⁻¹ PA⁻¹ FOR DISPLAY PURPOSES. TO CONVERT TO M S⁻¹ PA⁻¹: 1 M S⁻¹ PA⁻¹ = 360,000 CM HR⁻¹ PA⁻¹.

	C	ritical shear s	stress	Soil detachment coefficient				
		(Pa)		(cm hr-1 Pa-1)				
Test	Blaisdell	lterative	Regression	Blaisdell	lterative	Regression		
1	0.256	7.66	7.42	5.64	40.5	20.9		
2	5.25	6.07	6.07	12.5	65.2	19.3		
3	0.004	0.871	0.408	30.1	51.8	27.2		

Study site LAR7

Study site LAR7 is located at latitude 38.57° N and longitude 121.42° W, on the right bank of the American River (Figure 24). Notes describing the study site are found on page 86. Figure 25 shows photos of the bank face and upstream and downstream views. Figure 14C shows the presence of toe protection consisting of cobbles at this site. JETs could not be carried out at this site because of the steepness of the bank, presence of abundant vegetation, or loose bank material. The bank material was too loose to collect a soil sample for bulk density analysis. A soil sample for grain-size analysis was collected from the upper bank face.

The surveyed bank profile is shown in Figure 26. The bottom two meters of the profile could not be surveyed using the total station as the prism reflector could not be observed by the total station due to the topography of the bank and the presence of abundant vegetation on the lower bank face. Bank stratigraphy comprises a single sandy soil. Table 15 lists the grain-size distribution of the sandy soil sample. The texture of the soil is 8.86% clay, 26.7% silt, and 64.4% sand, and has a USCS classification of SM (silty sand).

Study site LAR8

Study site LAR8 is located at latitude 38.57° N and longitude 121.42° W, on the right bank of the American River (Figure 27). Notes describing the study site are found on page 87. Figure 28 shows photos of the bank face and upstream and downstream views. Three JETs were conducted at this site on the upper, more cohesive portion of the bank face. Soil samples were collected at the JET location after completion of the JETs for grain-size and bulk density analyses. Soil samples for grain-size and bulk density analyses were also collected from the lower sandy portion of the streambank.

The surveyed bank profile is shown in Figure 29. Bank stratigraphy comprises two soils. The bottom soil consists primarily of sandy material, which is overlain by a silty sand (Figure 28B). The bank soil transition is located at about 6.25 MASL. Table 16 lists the grain-size distributions of the silty sand and sand soil samples. The texture of the silty sand is 14.4% clay, 30.9% silt, 51.3% sand, and 3.4% gravel, and has a USCS classification of SM (silty sand). The measured dry density and saturated unit weight of the silty sand are 1.39 g cm⁻³ and 18.4 kN m⁻³, respectively. The texture of the sand is 5.03% clay, 2.71% silt, and 92.3% sand, and has a USCS classification of SP-SM (poorly graded sand with silt). The measured dry density and saturated unit weight of the sandy soil are 1.22 g cm⁻³ and 17.3 kN m⁻³, respectively.

The three JETs were conducted at a pressure head of 0.70 m, 0.32 m, and 1.55 m, which resulted in maximum initial applied shear stresses of 23.4 Pa, 13.2 Pa, and 15.2 Pa, respectively. Table 17 lists the measured erosion rate and shear stress time series during the three tests. Figure 30 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 18 lists the derived fluvial erosion-resistance parameters τ_c and k_d .

						Diameter	r (D) in mi	illimeters					
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
						Phi sca	le, $\phi = -$	-log ₂ D					
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	8.86	20.4	35.6	66.2	92.7	99.7	100	100	100	100	100	100	100

TABLE 15 - GRAIN-SIZE DISTRIBUTION OF THE SANDY SOIL AT STUDY SITE LAR7 ON THE AMERICAN RIVER.

TABLE 16 – GRAIN-SIZE DISTRIBUTION OF THE SILTY SAND (UPPER SOIL LAYER) AND SAND (LOWER SOIL LAYER) SOILS AT STUDY SITE LAR8 ON THE AMERICAN RIVER. THE SILTY SAND SAMPLE IS LISTED ON THE TOP ROW, WHEREAS THE SAND SAMPLE IS LISTED ON THE BOTTOM ROW.

						Diameter	· (<i>D</i>) in mi	illimeters					
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
						Phi sca	le, $\phi = -$	-log ₂ D					
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	14.4	29.3	45.3	58.4	73.6	90.1	96.6	96.6	97.2	97.7	98.5	99.8	100
%Finer	5.03	6.94	7.74	16.6	52.3	84.9	99.2	100	100	100	100	100	100

FIGURE 24 - MAP OF STUDY SITE LAR7 ON THE AMERICAN RIVER.

FIGURE 25 - PHOTOS OF STUDY SITE LAR7 ON THE AMERICAN RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

	Time	Scour depth	Shear stress	Erosion rate
Test	(min)	(mm)	(Pa)	(mm min-1)
1	0	0	-	-
	0.5	19.0	23.4	38.0
	1	23.0	14.3	8.0
	1.5	30.0	7.77	14.0
	3	39.0	6.12	6.0
	4	39.0	5.38	0
	6	41.0	5.24	1
	10	42.0	5.04	0.25

TABLE 17 - MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JETS CARRIED OUT AT STUDY SITE LAR8 ON THE AMERICAN RIVER.

	Time	Scour depth	Shear stress	Erosion rate
Test	(min)	(mm)	(Pa)	(mm min-1)
2	0	0	-	-
	0.5	5.0	13.2	10.0
	1	7.0	11.0	4.0
	2.5	11.0	8.44	2.67
	4	14.0	7.26	2.0
	6	36.0	4.74	11.0
	8	41.0	3.08	2.5
	10	44.0	2.77	1.5
	12	45.0	2.63	0.5
3	0	0	-	-
	5.0	19.0	15.2	3.8
	10.0	25.0	10.2	1.2
	15.0	28.0	9.23	0.6

Erodibility of Bank Materials on the Lower American and Sacramento Rivers, adjacent to the City of Sacramento, California

FIGURE 26 – SURVEYED BANK PROFILE OF STUDY SITE LAR7 ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE SOIL SAMPLING, WATER SURFACE, AND BANK MATERIAL.

FIGURE 27 - MAP OF STUDY SITE LAR8 ON THE AMERICAN RIVER.

FIGURE 28 – PHOTOS OF STUDY SITE LAR8 ON THE AMERICAN RIVER: (A) OBLIQUE VIEW OF BANK SURFACE, (B) FRONTAL VIEW OF BANK SURFACE SHOWING SANDY SOIL OVERLAIN BY A SILTY SAND, (C) VIEW UPSTREAM, AND (D) VIEW DOWNSTREAM.

FIGURE 29 – SURVEYED BANK PROFILE OF STUDY SITE LAR8 ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE JET, WATER SURFACE, AND BANK STRATIGRAPHY.

TABLE 18 – JET TEST RESULTS USING BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR8 ON THE AMERICAN RIVER. THE UNITS OF THE SOIL DETACHMENT COEFFICIENT ARE CM HR⁻¹ PA⁻¹ FOR DISPLAY PURPOSES. TO CONVERT TO M S⁻¹ PA⁻¹: 1 M S⁻¹ PA⁻¹ = 360,000 CM HR⁻¹ PA⁻¹.

	C	ritical shear s (Pa)	stress	Soil d	detachment co (cm hr-1 Pa	pefficient
Test	Blaisdell	Iterative	Regression	Blaisdell	Iterative	Regression
1	0.186	4.96	4.23	4.96	23.9	10.7
2	0.007	0.00	1.45	5.34	5.34	3.64
3	0.349	6.76	8.03	0.836	1.86	3.17

Study site LAR9

Study site LAR9 is located at latitude 38.58° N and longitude 121.43° W, on the right bank of the American River (Figure 31). Notes describing the study site are found on page 89. Figure 32 shows photos of the bank face and upstream and downstream views. Three JETs were conducted at this site on the lower middle portion of the bank face (one JET) and on the horizontal bank toe (two JETs). Soil samples were collected at the JET locations after completion of the JETs for grain-size and bulk density analyses. A soil sample for grain-size analysis was also collected from the upper bank face.

The surveyed bank profile is shown in Figure 33. Bank stratigraphy comprises two soils. The bottom soil is a silty sand (Figure 34), which is overlain by a sandy silt. The bank soil transition is located at about 6.75 MASL. Table 19 lists the grain-size distributions of the silty sand and sandy silt soil samples. The texture of the sandy silt is 10.5% clay, 51.5% silt, and 38.0%

sand, and has a USCS classification of ML (silt). The texture of the silty sand is on average 12.0% clay, 30.0% silt, and 58.0% sand. The soil collected at the higher JET location (lower middle portion of bank face) has a USCS classification of SM (silty sand), whereas the sample collected at the lower JET location (bank toe) has a USCS classification of ML (silt). The measured dry density and saturated unit weight of the silty sand are on average 1.29 g cm⁻³ and 17.8 kN m⁻³, respectively.

The three JETs were conducted at a pressure head of 0.70 m, 1.41 m, and 1.41 m, which resulted in maximum initial applied shear stresses of 20.9 Pa, 39.5 Pa, and 37.4 Pa, respectively. Table 20 lists the measured erosion rate and shear stress time series during the three tests. Figure 35 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 21 lists the derived fluvial erosion-resistance parameters τ_c and k_d .

FIGURE 30 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR8 ON THE AMERICAN RIVER: (A) TEST ONE, (B) TEST TWO, AND (C) TEST THREE. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPHS.

FIGURE 31 - MAP OF STUDY SITE LAR9 ON THE AMERICAN RIVER.

FIGURE 32 - PHOTOS OF STUDY SITE LAR9 ON THE AMERICAN RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

TABLE 19 – GRAIN-SIZE DISTRIBUTION OF THE SANDY SILT (UPPER SOIL LAYER) AND SILTY SAND (LOWER SOIL LAYER/BANK TOE) SOILS AT STUDY SITE LAR9 ON THE AMERICAN RIVER. THE SANDY SILT SAMPLE IS LISTED ON THE TOP ROW, WHEREAS THE TWO SILTY SAND SAMPLES ARE LISTED ON THE BOTTOM TWO ROWS.

						Diameter	(<i>D</i>) in mi	llimeters					
·	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
						Phi sca	le, $\phi = -$	log ₂ D					
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	10.5	32.1	62.0	88.4	97.3	99.7	100	100	100	100	100	100	100
%Finer	12.4	26.5	38.7	56.1	80.2	96.5	100	100	100	100	100	100	100
%Finer	11.6	28.1	45.2	73.6	97.7	100	100	100	100	100	100	100	100

FIGURE 33 – SURVEYED BANK PROFILE OF STUDY SITE LAR9 ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE JETS, WATER SURFACE, AND BANK STRATIGRAPHY.

	Time	Scour depth	Shear stress	E rosion rate
Test	(min)	(mm)	(Pa)	(mm min ⁻¹)
1	0	0	-	-
	0.5	12.0	20.9	24.0
	1	16.0	14.6	8.0
	2	31.0	7.93	15.0
	3	32.0	6.09	1.0
	5	38.0	5.52	3.0
	7	41.0	4.88	1.5
	11	43.0	4.58	0.5
2	0	0	-	-
	0.5	3.5	39.5	7.0
	1	4.5	35.1	2.0
	2	7.5	29.1	3.0
	3	9.0	26.2	1.5
	5	12.0	23.7	1.5
	7	13.0	21.8	0.5
	11	13.0	21.3	0

TABLE 20 - MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JETS CARRIED OUT AT STUDY SITE LAR9 ON THE AMERICAN RIVER.

	Time	Scour depth	Shear stress	E rosion rate
Test	(min)	(mm)	(Pa)	(mm min-1)
3	0	0	-	-
	0.5	5.0	37.4	10.0
	1	6.0	32.2	2.0
	2	9.0	25.9	3.0
	3	10.0	23.7	1.0
	5	11.0	22.7	0.5
	7	12.0	21.8	0.5
	11	13.0	20.9	0.25

TABLE 21 – JET TEST RESULTS USING BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR9 ON THE AMERICAN RIVER. THE UNITS OF THE SOIL DETACHMENT COEFFICIENT ARE CM HR⁻¹ PA⁻¹ FOR DISPLAY PURPOSES. TO CONVERT TO M S⁻¹ PA⁻¹: 1 M S⁻¹ PA⁻¹ = 360,000 CM HR⁻¹ PA⁻¹.

	C	ritical shear s (Pa)	Soil detachment coefficient (cm hr-1 Pa-1)			
Test	Blaisdell	lterative	Regression	Blaisdell	Iterative	Regression
1	0.048	4.35	4.27	4.28	15.4	8.42
2	3.10	21.0	20.5	0.432	2.44	1.75
3	5.15	20.3	20.2	0.509	2.34	2.51

FIGURE 34 – PHOTOS OF THE LOWER BANK SOIL AT STUDY SITE LAR9 ON THE AMERICAN RIVER ON WHICH JETS WERE CONDUCTED: (A) ABOUT 2 M ABOVE WATER LINE, AND (B) NEAR THE WATER LINE.

FIGURE 35 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE LAR9 ON THE AMERICAN RIVER: (A) TEST ONE, (B) TEST TWO, AND (C) TEST THREE. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPHS.

Study site LAR10

Study site LAR10 is located at latitude 38.59° N and longitude 121.45° W, on the left bank of the American River (Figure 36). Notes describing the study site are found on page 90. Figure 37 shows photos of the bank face and upstream and downstream views. JETs could not be carried out at this site because of the loose bank material. The bank material was too loose to collect a soil sample for bulk density analysis. Soil samples for grain-size analysis were collected at the bank toe and mid-bank.

The surveyed bank profile is shown in Figure 38. Bank material comprises primarily sands, and fines upward with increasing silt content. Table 22 lists the grain-size distribution of the bank toe and mid-bank soil samples. The texture of the bank toe soil is 4.87% clay, 0.65% silt, and 94.5% sand, and has a USCS classification of SP-SM (poorly graded sand with silt). The texture of the mid-bank soil is 7.84% clay, 24.4% silt, and 67.8% sand, and has a USCS classification of SM (silty sand).

FIGURE 36 - MAP OF STUDY SITE LAR10 ON THE AMERICAN RIVER.

FIGURE 37 - PHOTOS OF STUDY SITE LAR10 ON THE AMERICAN RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

TABLE 22 – GRAIN-SIZE DISTRIBUTIONS OF THE MID-BANK (TOP ROW) AND BANK TOE (BOTTOM ROW) SOILS AT STUDY SITE LARIO ON THE AMERICAN RIVER.

	Diameter (D) in millimeters												
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
						Phi sca	le, $oldsymbol{\phi} = -$	log ₂ D					
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	7.84	16.9	32.2	58.0	85.3	95.7	98.7	100	100	100	100	100	100
%Finer	4.87	5.19	5.52	11.1	38.8	90.4	99.7	100	100	100	100	100	100

FIGURE 38 – SURVEYED BANK PROFILE OF STUDY SITE LARIO ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE COLLECTED SOIL SAMPLES, WATER SURFACE, AND BANK STRATIGRAPHY.

Study site LAR11

Study site LAR11 is located at latitude 38.60° N and longitude 121.50° W, on the left bank of the American River immediately upstream of the confluence with the Sacramento River (Figure 39). Notes describing the study site are found on page 91. Figure 40 shows photos of the bank face and upstream and downstream views. JETs could not be carried out at this site because riprap and grasses covering the bank face. A soil sample for grain-size analysis was collected from the sandy berm (deposit) on the upper edge of the denser riprap cover. The bank material was too loose to collect a soil sample for bulk density analysis.

The surveyed bank profile is shown in Figure 41. Bank material is primarily comprised of sands. Table 23 lists the grain-size distribution of the bank material. The texture of the bank soil is 6.78% clay, 4.42% silt, and 88.8% sand, and has a USCS classification of SM (silty sand).

Diameter (D) in millimeters													
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
	Phi scale, $oldsymbol{\phi} = - \mathrm{log}_2 D$												
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	6.78	8.78	11.2	25.7	85.6	99.8	100	100	100	100	100	100	100

TABLE 23 - GRAIN-SIZE DISTRIBUTION OF THE BANK MATERIAL AT STUDY SITE LARII ON THE AMERICAN RIVER.

FIGURE 39 - MAP OF STUDY SITE LAR11 ON THE AMERICAN RIVER.

FIGURE 40 - PHOTOS OF STUDY SITE LAR11 ON THE AMERICAN RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

Study site SAC1

Study site SAC1 is located at latitude 38.60° N and longitude 121.51° W on the left bank of the Sacramento River immediately downstream of the confluence with the American River (Figure 42). Notes describing the study site are found on page 92. Figure 43 shows photos of the bank face and upstream and downstream views. JETs could not be carried out at this site because riprap covering the bank face. A soil sample for grain-size analysis was collected at the top of the riprap. The bank material was too loose to collect a soil sample for bulk density analysis.

The surveyed bank profile is shown in Figure 44. Bank material is a sandy soil, which is protected at the toe by a mix of cobble and riprap, and scattered riprap and grasses along the upper portion of the bank. Table 24 lists the grain-size distribution of the deposited bank material on the upper end of the riprap-cobble toe protection. The texture of the deposit is 8.43% clay, 5.47% silt, and 86.1% sand, and has a USCS classification of SM (silty sand).

FIGURE 41 – SURVEYED BANK PROFILE OF STUDY SITE LARII ON THE AMERICAN RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE COLLECTED SOIL SAMPLE, WATER SURFACE, BANK MATERIAL, AND RIPRAP.

						Diameter	r (D) in mi	illimeters					
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
	Phi scale, $oldsymbol{\phi} = - \mathrm{log}_2 D$												
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	8.43	12.1	13.9	31.9	87.5	99.8	100	100	100	100	100	100	100

TABLE 24 - GRAIN-SIZE DISTRIBUTION OF	THE DEPOSITED BANK MATERIAL	AT STUDY SITE SACI ON TH	IE SACRAMENTO RIVER
	THE DEI OSTIED DANK MATERIAE	AT STOPT SHE SACTOR IT	

FIGURE 42 - MAP OF STUDY SITE SAC1 ON THE SACRAMENTO RIVER.

FIGURE 43 – PHOTOS OF STUDY SITE SAC1 ON THE SACRAMENTO RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

Study site SAC3

Study site SAC3 is located at latitude 38.55° N and longitude 121.51° W, on the left bank of the Sacramento River (Figure 45). Notes describing the study site are found on page 93. Figure 46 shows photos of the bank face and upstream and downstream views. Six JETs were conducted at this site on the lower (three JETs) and upper middle (three JETs) portions of the bank face. Soil samples were collected at the JET locations after completion of the JETs for grain-size and bulk density analyses. A soil sample was also collected at the bank toe.

The surveyed bank profile is shown in Figure 47. Bank stratigraphy comprises three soils. The bottom soil at the bank toe is a sand, which is overlain by a sandy silt material. The upper most bank material is a silty sand. The bank soil transitions are located at about 2.3 and 3.6 MASL. Table 25 lists the grain-size distributions of the bank toe and bank face soil samples. The texture of the bank toe sample is 2.24% clay, 0.07% silt, and 97.7% sand, and has a USCS classification of SP (poorly graded sand). The texture of the middle bank material is 12.5% clay, 47.3% silt, and 40.2% sand, and has a USCS classification of ML (silt). The texture of the upper bank material is 10.8% clay, 36.2% silt, and 53.0% sand, and has a USCS classification of ML (silt). The measured dry density and saturated unit weight of the silty sand at the upper JET location are 1.00 g cm⁻³ and 16.0 kN m⁻³, respectively.

Three JETs were conducted at each, lower and upper, location. The three JETs at the lower location (JET 1 through 3) were conducted at pressure heads of 1.41 m, 0.70 m, and 1.05 m, which resulted in maximum initial applied shear stresses of 37.4 Pa, 23.3 Pa, and 32.7 Pa, respectively. Table 26 lists the measured erosion rate and shear stress time series during the three tests. Figure 48 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 27 lists the derived fluvial erosion-resistance parameters τ_c and k_d . The three JETs at the upper location (JET 4 through 6) were conducted at pressure heads of 0.77 m, 0.70 m, and 0.70 m, which resulted in maximum initial applied shear stresses of 29.6 Pa, 24.7 Pa, and 23.3 Pa, respectively. Table 28 lists the measured erosion rate and shear stress time series during the three tests. Figure 49 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 27 Pa, and 23.3 Pa, respectively. Table 28 lists the measured erosion rate and shear stress time series during the three tests. Figure 49 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 27 lists the derived fluvial erosion-resistance parameters τ_c and k_d .

FIGURE 44 – SURVEYED BANK PROFILE OF STUDY SITE SAC1 ON THE SACRAMENTO RIVER. GRAPH INDICATES APPROXIMATE LOCATION OF THE COLLECTED SOIL SAMPLE, WATER SURFACE, BANK MATERIAL, AND RIPRAP.

TABLE 25 – GRAIN-SIZE DISTRIBUTIONS OF THE SILTY SAND (UPPER BANK FACE, TOP ROW), SANDY SILT (LOWER BANK FACE, MIDDLE ROW), AND SANDY (BANK TOE, BOTTOM ROW) SOILS AT STUDY SITE SAC3 ON THE SACRAMENTO RIVER.

-													
Diameter (D) in millimeters													
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
	Phi scale, $oldsymbol{\phi} = - \mathrm{log}_2 D$												
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
%Finer	10.8	25.5	47.0	81.0	97.8	99.6	100	100	100	100	100	100	100
%Finer	12.5	32.6	59.8	95.6	99.8	100	100	100	100	100	100	100	100
%Finer	2.22	2.29	2.29	7.24	63.7	99.9	100	100	100	100	100	100	100

FIGURE 45 - MAP OF STUDY SITE SAC3 ON THE SACRAMENTO RIVER.

FIGURE 46 - PHOTOS OF STUDY SITE SAC3 ON THE SACRAMENTO RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

TABLE 26 – MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JETS CARRIED OUT ON THE LOWER JET LOCATION AT STUDY SITE SAC3 ON THE SACRAMENTO RIVER.

	Time	Scour depth	Shear stress	E rosion rate
Test	(min)	(mm)	(Pa)	(mm min ⁻¹)
1	0	0	-	-
	0.5	13.0	37.4	26.0
	1	14.0	27.1	2.0
	2	24.5	16.3	10.5
	3	25.0	13.4	0.5
	5	31.5	12.1	3.25
	7	33.0	10.7	0.75
	12	33.5	10.4	0.1

	Time	Scour depth	Shear stress	Erosion rate	
Test	(min)	(mm)	(Pa)	(mm min-1)	
2	0	0	-	-	
	0.5	6.5	23.3	13.0	
	1	7.5	19.2	2.0	
	2	8.0	15.6	0.5	
	4	8.0	15.4	0	
	8	8.0	15.4	0	
3	0	0	-	-	
	0.5	1.0	32.7	2.0	
	1	3.5	29.7	5.0	
	2	13.0	21.7	9.5	
	3	20.0	15.2	7.0	
	4	27.0	11.7	7.0	
	5	27.5	10.3	0.5	
	7	28.0	10.2	0.25	
	11	28.0	10.1	0	

FIGURE 47 – SURVEYED BANK PROFILE OF STUDY SITE SAC3 ON THE SACRAMENTO RIVER. GRAPH INDICATES APPROXIMATE LOCATIONS OF JETS, WATER SURFACE, AND BANK STRATIGRAPHY.

FIGURE 48 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR THE LOWER JET LOCATION AT STUDY SITE SAC3 ON THE SACRAMENTO RIVER: (A) TEST ONE, (B) TEST TWO, AND (C) TEST THREE. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPHS.

TABLE 27 – JET TEST RESULTS USING BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE SAC3 ON THE SACRAMENTO RIVER. THE UNITS OF THE SOIL DETACHMENT COEFFICIENT ARE CM HR⁻¹ PA⁻¹ FOR DISPLAY PURPOSES. TO CONVERT TO M S⁻¹ PA⁻¹: 1 M S⁻¹ PA⁻¹ = 360,000 CM HR⁻¹ PA⁻¹.

	C	ritical shear s (Pa)	stress	Soil detachment coefficient (cm hr-1 Pa-1)				
Test	Blaisdell	lterative	Regression	Blaisdell	lterative	Regression		
1	0.417	10.3	9.92	1.64	9.21	4.46		
2	11.7	15.4	15.4	2.06	18.3	8.07		
3	0.021	10.1	10.1	1.53	11.5	6.86		
4	4.15	13.3	14.2	0.439	2.37	7.78		
5	0.451	7.57	7.65	0.912	3.24	3.52		
6	2.68	12.1	12.3	0.331	1.20	1.62		

	Time	Scour depth	Shear stress	Erosion rate
Test	(min)	(mm)	(Pa)	(mm min ⁻¹)
4	0	0	-	-
	0.25	5.0	29.6	20.0
	0.5	8.0	23.6	12.0
	0.75	10.0	18.0	8.0
	1	11.0	17.4	4.0
	1.5	12.0	17.2	2.0
	2.5	14.0	16.1	2.0
	3.5	14.0	15.4	0
	5.5	15.0	15.1	0.5
	7.5	15.0	14.7	0
	12.5	16.0	14.4	0.2
	17.5	16.0	14.1	0
	22.5	17.0	13.8	0.2
	27.5	17.0	13.6	0
	32.5	17.0	13.6	0
5	0	0	-	-
	0.5	4.5	24.7	9.0
	1	7.0	20.5	5.0
	2	18.5	13.3	11.5
	3	19.0	10.3	0.5
	5	19.5	10.1	0.25
	9	20.5	9.80	0.25
	13	23.0	9.19	0.625
	17	26.0	8.35	0.75
	21	26.5	7.87	0.125
6	0	0	-	-
	0.5	2.0	23.3	4.0
	1	2.5	21.8	1.0
	2	5.0	19.0	2.5
	3	7.0	17.0	2.0
	5	8.0	15.8	0.5
	9	9.0	15.1	0.25
	13	10.0	14.4	0.25
	17	12.0	13.5	0.5
	21	12.5	12.8	0.125

TABLE 28 – MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JETS CARRIED OUT ON THE UPPER JET LOCATION AT STUDY SITE SAC3 ON THE SACRAMENTO RIVER.

Study site SAC5

Study site SAC5 is located at latitude 38.51° N and longitude 121.53° W on the left bank of the Sacramento River (Figure 50). Notes describing the study site are found on page 94. Figure 51 shows photos of the bank face and upstream and downstream views. JETs and soil sampling for bulk density and grain-size analyses could not be carried out at this site because riprap and dense grasses covering the bank face.

The surveyed bank profile is shown in Figure 52. Based on visual observation, bank material is a sandy soil. The entire bank face, up to the toe of the levee, is protected by riprap. The levee face is covered by grasses.

FIGURE 49 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR THE UPPER JET LOCATION AT STUDY SITE SAC3 ON THE SACRAMENTO RIVER: (A) TEST FOUR, (B) TEST FIVE, AND (C) TEST SIX. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPHS.

Study site SAC6

Study site SAC6 is located at latitude 38.51° N and longitude 121.55° W on the left bank of the Sacramento River (Figure 53). Notes describing the study site are found on page 95. Figure 54 shows photos of the bank face and upstream and downstream views. JETs could not be carried out at this site because riprap and abundant vegetation covering the bank face. Soil samples for grain-size and bulk density analyses were collected above the riprap at about 6 MASL.

The surveyed bank profile is shown in Figure 55. Bank material is a silty sand, which is protected at the toe by riprap, and riprap and vegetation along the upper portion of the bank. Table 29 lists the grain-size distribution of the bank material. The texture of the bank material sample is 10.8% clay, 24.2% silt, and 65.0% sand, and has a USCS classification of SM (silty sand). The measured dry density and saturated unit weight of the silty sand are 1.26 g cm⁻³ and 17.6 kN m⁻³, respectively.

FIGURE 50 - MAP OF STUDY SITE SAC5 ON THE SACRAMENTO RIVER.

FIGURE 51 - PHOTOS OF STUDY SITE SAC5 ON THE SACRAMENTO RIVER: (A) BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

TABLE 29 - GRAIN-SIZE DISTRIBUTION OF BANK MATERIAL AT STUDY SITE SAC6 ON THE SACRAMENTO RIVER.

	Diameter (D) in millimeters													
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3	
						Phi sca	le, $\phi = -$	-log ₂ D						
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5	
%Finer	10.8	21.5	35.0	64.1	81.3	94.7	100	100	100	100	100	100	100	

FIGURE 52 – SURVEYED BANK PROFILE OF STUDY SITE SAC5 ON THE SACRAMENTO RIVER. GRAPH INDICATES APPROXIMATE LOCATIONS OF WATER SURFACE AND RIPRAP BANK PROTECTION.

Study site SAC7

Study site SAC7 is located at latitude 38.47° N and longitude 121.53° W, on the left bank of the Sacramento River (Figure 56). Notes describing the study site are found on page 96. Figure 57 shows photos of the bank face and upstream and downstream views. Three JETs were conducted at this site about 2 m above the water line. Soil samples were collected at the JET locations after completion of the JETs for grain-size and bulk density analyses. An additional sample of point bar/channel bed sediment was collected at the water line.

The surveyed bank profile is shown in Figure 58. Bank material is a silty sand. Table 30 lists the grain-size distributions of the silty sand and point-bar materials. The point-bar material was collected near the water line. The texture of the silty sand bank material is 10.7% clay, 35.6% silt, and 53.7% sand, and has a USCS classification of ML (silt). The measured dry density and saturated unit weight of the silty sand are: sample 1, 1.07 g cm⁻³ and 16.4 kN m⁻³, respectively; and sample 2, 1.03 g cm⁻³ and 16.2 kN m⁻³, respectively. The texture of the point-bar sample is 5.76% clay, 0.60% silt, and 93.6% sand, and has a USCS classification of SP-SM (poorly graded sand with silt).

The three JETs were conducted at a pressure head of 1.41 m, 1.76 m, and 2.11 m, which resulted in maximum initial applied shear stresses of 44.3 Pa, 48.4 Pa, and 59.7 Pa, respectively. Table 31 lists the measured erosion rate and shear stress time series during the three tests. Figure 59 presents the fitted excess shear stress relationships, Eq. (1), obtained using the Blaisdell, Iterative, and Linear Regression methods. Table 32 lists the derived fluvial erosion-resistance parameters τ_c and k_d .

FIGURE 53 – MAP OF STUDY SITE SAC6 ON THE SACRAMENTO RIVER.

FIGURE 54 – PHOTOS OF STUDY SITE SAC6 ON THE SACRAMENTO RIVER: (A) BANK SURFACE SEEN FROM BANK TOP, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

TABLE 30 – GRAIN-SIZE DISTRIBUTIONS OF BANK (TOP ROW) AND POINT-BAR (BOTTOM ROW) MATERIALS AT STUDY SITE SAC7 ON THE SACRAMENTO RIVER.

	Diameter (D) in millimeters														
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3		
	Phi scale, $oldsymbol{\phi} = - \mathrm{log}_2 D$														
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5		
%Finer	10.7	24.3	46.3	86.4	99.8	100	100	100	100	100	100	100	100		
%Finer	5.76	6.24	6.36	31.0	98.9	100	100	100	100	100	100	100	100		

FIGURE 55 – SURVEYED BANK PROFILE OF STUDY SITE SAC6 ON THE SACRAMENTO RIVER. GRAPH INDICATES APPROXIMATE LOCATIONS OF SOIL SAMPLING, WATER SURFACE, AND RIPRAP BANK PROTECTION.

Study site SAC8

Study site SAC8 is located at latitude 38.48° N and longitude 121.52° W on the left bank of the Sacramento River (Figure 60). Notes describing the study site are found on page 97. Figure 61 shows photos of the bank face and upstream and downstream views. JETs could not be carried out at this site because riprap and abundant vegetation covering the bank face. Soil samples for grain-size and bulk density analyses were collected from sediments deposited on the riprap.

The surveyed bank profile is shown in Figure 62. The bank face is completely protected by riprap and vegetation. The soil deposited between elevations of about 3 to 5 MASL is a silty sand. Table 33 lists the grain-size distribution of the deposited bank material. The texture of the deposit is 12.2% clay, 31.6% silt, and 56.2% sand, and has a USCS classification of ML (silt). The measured dry density and saturated unit weight of the deposited material are 1.04 g cm⁻³ and 16.2 kN m⁻³, respectively.

FIGURE 56 - MAP OF STUDY SITE SAC7 ON THE SACRAMENTO RIVER.

FIGURE 57 – PHOTOS OF STUDY SITE SAC7 ON THE SACRAMENTO RIVER: (A) FRONTAL VIEW OF BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

FIGURE 58 – SURVEYED BANK PROFILE OF STUDY SITE SAC7 ON THE SACRAMENTO RIVER. GRAPH INDICATES APPROXIMATE LOCATIONS OF JETS, WATER SURFACE, AND BANK SOIL.

	Time	Scour depth	Shear stress	Erosion rate
Test	(min)	(mm)	(Pa)	(mm min-1)
1	0	0	-	-
	0.5	3.5	44.3	7.0
	1	7.5	36.3	8.0
	1.5	8.0	29.4	1.0
	2.5	9.0	28.4	1.0
	5	9.5	27.4	0.2
	10	11.0	26.2	0.3
	15	12.5	24.5	0.3
	20	13.0	23.4	0.1

TABLE 31 – MEASURED EROSION RATE AND APPLIED SHEAR STRESS FOR JETS CARRIED OUT ON THE LOWER JET LOCATION AT STUDY SITE SAC7 ON THE SACRAMENTO RIVER.

	Time	Scour depth	Shear stress	Erosion rate		
Test	(min)	(mm)	(Pa)	(mm min-1)		
2	0	0	-	-		
	0.25	7.0	48.4	28.0		
	0.5	11.0	37.1	16.0		
	0.75	12.0	27.8	4.0		
	1.25	17.0	24.7	10.0		
	2	19.0	21.5	2.67		
	3	19.0	20.8	0		
	5	20.0	20.4	0.5		
	7	20.0	20.0	0		
	12	20.0	20.0	0		
	22	21.0	19.7	0.1		
	32	33.0	16.0	1.2		
	42	38.0	12.3	0.5		
	52	38.0	11.5	0		
3	0	0	-	-		
	0.5	8.5	59.7	17.0		
	1	17.0	40.1	17.0		
	2	20.0	25.5	3.0		
	3	25.0	22.1	5.0		
	4	27.5	19.5	2.5		
	6	32.0	17.5	2.25		
	8	36.5	15.3	2.25		
	10	37.0	14.2	0.25		
	1.4	27.0	1/1	0		

Erodibility of Bank Materials on the Lower American and Sacramento Rivers, adjacent to the City of Sacramento, California

TABLE 32 – JET TEST RESULTS USING BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE SAC7 ON THE SACRAMENTO RIVER. THE UNITS OF THE SOIL DETACHMENT COEFFICIENT ARE CM HR⁻¹ PA⁻¹ FOR DISPLAY PURPOSES. TO CONVERT TO M S⁻¹ PA⁻¹: 1 M S⁻¹ PA⁻¹ = 360,000 CM HR⁻¹ PA⁻¹.

	C	ritical shear s	stress	Soil detachment coefficient							
		(Pa)			(cm hr-1 Pa	·1)					
Test	Blaisdell	lterative	Regression	Blaisdell	lterative	Regression					
1	6.84	23.0	24.7	0.260	1.15	2.53					
2	1.85	10.1	16.9	0.320	0.740	4.7					
3	0.201	13.3	14.0	0.975	3.33	2.72					

TABLE 33 – GRAIN-SIZE DISTRIBUTION OF DEPOSITED BANK MATERIAL AT STUDY SITE SAC8 ON THE SACRAMENTO RIVER.

	Diameter (D) in millimeters													
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3	
						Phi sca	le, $oldsymbol{\phi} = -$	log ₂ D						
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5	
%Finer	12.2	25.5	43.8	81.1	99.6	100	100	100	100	100	100	100	100	

Erodibility of Bank Materials on the Lower American and Sacramento Rivers, adjacent to the City of Sacramento, California

FIGURE 59 – JET ANALYSIS USING THE BLAISDELL, ITERATIVE AND LINEAR REGRESSION METHODS FOR STUDY SITE SAC7 ON THE SACRAMENTO RIVER: (A) TEST ONE, (B) TEST TWO, AND (C) TEST THREE. THE REGRESSION EQUATION AND COEFFICIENT OF DETERMINATION (R²) FOR THE LINEAR REGRESSION METHOD ARE DISPLAYED ON THE GRAPHS.

Study site SAC9

Study site SAC9 is located at latitude 38.46° N and longitude 121.50° W on the left bank of the Sacramento River (Figure 63). Notes describing the study site are found on page 98. Figure 64 shows photos of the bank face and upstream and downstream views. JETs and soil sampling for bulk density and grain-size analyses could not be carried out at this site because riprap and vegetation covering the bank face.

The surveyed bank profile is shown in Figure 65. Based on visual observation, bank material is a silty sand. The entire bank face, up to the toe of the levee, is protected by a mix of cobble and riprap. The levee face is covered by grasses.

FIGURE 60 - MAP OF STUDY SITE SAC8 ON THE SACRAMENTO RIVER.

FIGURE 61 – PHOTOS OF STUDY SITE SAC8 ON THE SACRAMENTO RIVER: (A) FRONTAL VIEW OF BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

FIGURE 62 – SURVEYED BANK PROFILE OF STUDY SITE SAC8 ON THE SACRAMENTO RIVER. GRAPH INDICATES APPROXIMATE LOCATIONS OF SOIL SAMPLE COLLECTION, WATER SURFACE, AND BANK PROTECTION.

Study site SAC10

Study site SAC10 is located at latitude 38.45° N and longitude 121.50° W on the left bank of the Sacramento River (Figure 66). Notes describing the study site are found on page 99. Figure 67 shows photos of the bank face and upstream and downstream views. JETs could not be carried out at this site because riprap/cobble mix and abundant vegetation covered the bank face. A soil sample for grain-size analysis was collected from sediments deposited on the riprap/cobble mix.

The surveyed bank profile is shown in Figure 68. The bank face is completely protected by riprap and vegetation. The soil deposited between elevations of about 2.5 to 4 MASL is a sandy silt. Table 34 lists the grain-size distribution of the deposited bank material. The texture of the deposit is 19.0% clay, 48.4% silt, and 32.6% sand, and has a USCS classification of ML (silt).

FIGURE 63 - MAP OF STUDY SITE SAC9 ON THE SACRAMENTO RIVER.

FIGURE 64 – PHOTOS OF STUDY SITE SAC9 ON THE SACRAMENTO RIVER: (A) FRONTAL VIEW OF BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

FIGURE 65 – SURVEYED BANK PROFILE OF STUDY SITE SAC9 ON THE SACRAMENTO RIVER. GRAPH INDICATES APPROXIMATE LOCATIONS OF WATER SURFACE AND BANK PROTECTION.

	Diameter (D) in millimeters													
	0.002	0.025	0.063	0.125	0.25	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3	
						Phi sca	le, $\phi = -$	log ₂ D						
	9	5.3	4	3	2	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5	
%Finer	19.0	43.4	67.4	96.3	99.6	99.9	100	100	100	100	100	100	100	

TABLE 34 - GRAIN-SIZE DISTRIBUTION OF DEPOSITED BANK MATERIAL AT STUDY SITE SAC10 ON THE SACRAMENTO RIVER.

FIGURE 66 - MAP OF STUDY SITE SAC10 ON THE SACRAMENTO RIVER.

FIGURE 67 – PHOTOS OF STUDY SITE SAC10 ON THE SACRAMENTO RIVER: (A) FRONTAL VIEW OF BANK SURFACE, (B) VIEW UPSTREAM, AND (C) VIEW DOWNSTREAM.

Erodibility of Bank Materials on the Lower American and Sacramento Rivers, adjacent to the City of Sacramento, California

FIGURE 68 – SURVEYED BANK PROFILE OF STUDY SITE SAC10 ON THE SACRAMENTO RIVER. GRAPH INDICATES APPROXIMATE LOCATIONS OF SOIL SAMPLE COLLECTION, WATER SURFACE, AND BANK PROTECTION.

REFERENCES

Ariathurai, R., & Arulanandan, K. (1978). Erosion rates of cohesive soils. Journal of the Hydraulics Division, 104(HY2), 279-283.

- ASTM. (2017a). ASTM D2487-17e1: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA: ASTM International.
- ASTM. (2017b). ASTM D4318-17e1: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA: ASTM International.
- ASTM. (2017c). ASTM D6913 / D6913M-17: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. West Conshohocken, PA: ASTM International.
- Bankhead, N., Simon, A., Thomas, R., Klimetz, L., & Klimetz, D. (2010). Sediment loadings from streambanks and levees along the Sacramento River and selected tributaries. Oxford, MS: U.S. Department of Agriculture, Agricultural Research Service, National Sedimentation Laboratory.
- Brunner, G. W. (2016). HEC-RAS River Analysis System User's Manual Version 5.0. Davis: US Army Corps of Engineers.
- Dedement, G. (2020, April 14). Soil Classification Based on Unified Soil Classification System. Retrieved from MATLAB Central File Exchange: https://www.mathworks.com/matlabcentral/fileexchange/53476-soil-classification-based-on-unifiedsoil-classification-system
- Hanson, G. (1990). Surface erodibility of earthen channels at high stress. Part II Developing an in situ testing device. Transactions of ASAE, 33(1), 132-137.
- Hanson, G. J., & Cook, K. R. (2004). Apparatus, test procedures, and analytical methods to measure soil erodibility in situ. Applied Engineering in Agriculture, 20(4), 455-462.
- Hanson, G. J., & Simon, A. (2001). Erodibility of cohesive streambeds in the loess area of the midwestern USA. *Hydrological Processes*, 15(1), 23-38. doi:10.1002/hyp.149
- Hanson, G. J., Robinson, K. M., & Temple, D. M. (1990). Pressure and stress distributions due to a submerged impinging jet. Proceedings of the 1990 National Conference on Hydraulic Engineering (pp. 525-530). Washington: ASCE.
- Lai, Y. G., Thomas, R. E., Ozeren, Y., Simon, A., Greimann, B. P., & Wu, K. (2015). Modeling of multilayer cohesive bank erosion with a coupled bank stability and mobile-bed model. *Geomorphology*, 243, 116-129.
- Langendoen, E. J., & Alonso, C. V. (2008). Modeling the evolution of incised streams. I: Model formulation and validation of flow and streambed evolution components. *Journal of Hydraulic Engineering*, 134(6), 749-762. doi:10.1061/(ASCE)0733-9429(2008)134:6(749)
- Langendoen, E. J., & Simon, A. (2008). Modeling the evolution of incised streams. II: Streambank erosion. Journal of Hydraulic Engineering, 134(7), 905-915. doi:10.1061/(ASCE)0733-9429(2008)134:7(905)
- Motta, D., Abad, J. D., Langendoen, E. J., & Garcia, M. H. (2012). A simplified 2D model for meander migration with physically-based bank evolution. *Geomorphology*, *163-164*, 10-25. doi:10.1016/j.geomorph.2011.06.036
- Simon, A., Pollen-Bankhead, N., & Thomas, R. E. (2011). Development and application of a deterministic bank stability and toe erosion model for stream restoration. In A. Simon, S. J. Bennett, & J. M. Castro (Eds.), Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools (pp. 453-474). Washington, DC: American Geophysical Union.
- Simon, A., Thomas, R. E., & Klimetz, L. (2010). Comparison and experiences with field techniques to measure critical shear stress and erodibility of cohesive deposits. *Joint Federal Interagency Conference 2010* (pp. 1-13). Washington, DC: Advisory Committee on Water Information.
- Soil Survey Staff. (2014). Kellogg Soil Survey Laboratory Methods Manual, Soil Survey Investigations Report No. 42, Version 5. (R. Burt, & S. S. Staff, Eds.) Lincoln, NE: U.S. Department of Agriculture, Natural Resources Conservation Service.

USACE. (2016). American River Common Features General Reevaluation Report, California. Washington, DC: Department of the Army, Chief of Engineers, U.S. Army Corps of Engineers.

APPENDIX 1 DATA TABLES

Bank soil density

Site	Sample volume	Wet weight	Dry weight	Water weight	Moisture content	Solid volume	Void volume	Void ratio	Saturation (-)	Dry density	Ambient density	Dry unit weight	Ambient unit	Saturated unit
	(c m³)	(g)	(g)	(g)	(-)	(cm³)	(c m³)	(-)		(g cm-3)	(g cm-3)	(kN m-³)	weight	weight
													(kN m ⁻³)	(kN m ⁻³)
LAR1	103	133.95	108.94	25.01	0.23	40.35	62.65	1.55	0.40	1.06	1.30	10.38	12.76	16.34
LAR2	103	152.66	121.51	31.15	0.26	45.00	58.00	1.29	0.54	1.18	1.48	11.57	14.54	17.10
LAR4†	103	88.19	78.42	9.77	0.12	29.04	73.96	2.55	0.13	0.76	0.86	7.47	8.40	14.51
LAR5-1	103	169.14	127.73	41.41	0.32	47.31	55.69	1.18	0.74	1.24	1.64	12.17	16.11	17.47
LAR5-2	103	167.86	126.95	40.91	0.32	47.02	55.98	1.19	0.73	1.23	1.63	12.09	15.99	17.42
LAR8-1	103	148.43	125.65	22.78	0.18	46.54	56.46	1.21	0.40	1.22	1.44	11.97	14.14	17.34
LAR8-2	103	159.52	142.67	16.85	0.12	52.84	50.16	0.95	0.34	1.39	1.55	13.59	15.19	18.37
LAR9-1	103	172.31	129.41	42.90	0.33	47.93	55.07	1.15	0.78	1.26	1.67	12.33	16.41	17.57
LAR9-2	103	162.76	135.75	27.01	0.20	50.28	52.72	1.05	0.51	1.32	1.58	12.93	15.50	17.95
SAC3-1	103	117.53	103.39	14.14	0.14	38.29	64.71	1.69	0.22	1.00	1.14	9.85	11.19	16.01
SAC3-2	103	128.95	98.18	30.77	0.31	36.36	66.64	1.83	0.46	0.95	1.25	9.35	12.28	15.70
SAC6	103	143.39	129.95	13.44	0.10	48.13	54.87	1.14	0.24	1.26	1.39	12.38	13.66	17.60
SAC7-1	103	127.78	110.59	17.19	0.16	40.96	62.04	1.51	0.28	1.07	1.24	10.53	12.17	16.44
SAC7-2	103	121.70	106.03	15.67	0.15	39.27	63.73	1.62	0.25	1.03	1.18	10.10	11.59	16.17
SAC8	103	123.79	106.82	16.97	0.16	39.56	63.44	1.60	0.27	1.04	1.20	10.17	11.79	16.22
SAC55-1	103	140.12	115.90	24.22	0.21	42.93	60.07	1.40	0.40	1.13	1.36	11.04	13.35	16.76
SAC55-2	103	128.10	109.18	18.92	0.17	40.44	62.56	1.55	0.30	1.06	1.24	10.40	12.20	16.36

[†] Part of the sample fell out of its sleeve. The dry density value may therefore be too low.

Grain size distribution and soil type

										%Finer								
		Diameter (D) in millimeters	0.002	0.025	0.063	0.088	0.125	0.177	0.25	0.354	0.5	1.41	2.0	2.83	4.0	5.66	8.0	11.3
	USCS	Phi scale, $oldsymbol{\phi} = - \mathrm{log}_2 D$	9	5.3	4	3.5	3	2.5	2	1.5	1	-0.5	-1	-1.5	-2	-2.5	-3	-3.5
Study site	type	Location																
LAR1	SM	Mid bank	7.79	12.6	18.7	26.3	42.3	67.8	88.0	98.1	99.8	100	100	100	100	100	100	100
LAR2	SM	Mid bank	9.54	16.7	22.8	29.9	40.7	61.6	81.6	95.8	98.6	99.9	100	100	100	100	100	100
LAR3	SM	Upper bank	10.3	23.9	40.5	54.9	72.2	88.6	96.1	99.2	99.8	100	100	100	100	100	100	100
LAR4	SM	Mid bank	8.80	15.2	23.0	31.8	47.4	70.3	86.9	97.0	99.1	99.8	100	100	100	100	100	100
LAR5	SM	Lower bank	6.75	9.32	11.8	16.0	25.1	54.4	83.6	98.0	99.8	100	100	100	100	100	100	100
LAR5	SM	Тое	6.53	9.91	13.1	19.0	31.3	57.8	80.4	97.0	99.7	100	100	100	100	100	100	100
LAR7	SM	Lower bank	8.86	20.4	35.6	48.2	66.2	83.6	92.7	98.4	99.7	100	100	100	100	100	100	100
LAR8	SM	Upper bank	14.4	29.3	45.3	51.7	58.4	66.4	73.6	83.4	90.1	96.6	96.6	97.2	97.7	98.5	99.8	100
LAR8	SP-SM	Lower bank	5.03	6.94	7.74	10.7	16.6	33.2	52.3	69.7	84.9	99.2	100	100	100	100	100	100
LAR9	ML	Upper bank	10.5	32.1	62.0	78.9	88.4	94.4	97.3	99.0	99.7	100	100	100	100	100	100	100
LAR9	SM	Lower bank	12.4	26.5	38.7	46.5	56.1	69.2	80.2	91.4	96.5	100	100	100	100	100	100	100
LAR9	ML	Тое	11.6	28.1	45.2	57.7	73.6	90.4	97.7	99.8	100	100	100	100	100	100	100	100
LAR10	SM	Mid bank	7.84	16.9	32.2	43.6	58.0	74.6	85.3	92.9	95.7	98.7	100	100	100	100	100	100
LAR10	SP-SM	Тое	4.87	5.19	5.52	7.07	11.1	21.8	38.8	68.7	90.4	99.7	100	100	100	100	100	100
LAR11	SM	Mid bank	6.78	8.78	11.2	15.6	25.7	51.4	85.6	98.8	99.8	100	100	100	100	100	100	100
SAC1	SM	Lower bank	8.43	12.1	13.9	19.3	31.9	59.8	87.5	98.8	99.8	100	100	100	100	100	100	100
SAC3	ML	Mid bank	10.8	25.5	47.0	61.5	81.0	93.8	97.8	99.2	99.6	100	100	100	100	100	100	100
SAC3	ML	Lower bank	12.5	32.6	59.8	82.0	95.6	99.4	99.8	99.9	100	100	100	100	100	100	100	100
SAC3	SP	Тое	2.22	2.29	2.29	3.07	7.24	25.5	63.7	98.5	99.9	100	100	100	100	100	100	100
SAC6	SM	Upper bank	10.8	21.5	35.0	48.2	64.1	76.8	81.3	87.8	94.7	100	100	100	100	100	100	100
SAC7	ML	Mid bank	10.7	24.3	46.3	61.7	86.4	98.8	99.8	99.9	100	100	100	100	100	100	100	100
SAC7	SP-SM	Toe/Bed	5.76	6.24	6.36	11.7	31.0	84.2	98.9	99.9	100	100	100	100	100	100	100	100
SAC8	ML	Mid bank	12.2	25.5	43.8	57.8	81.1	97.3	99.6	99.9	100	100	100	100	100	100	100	100
SAC10	ML	Lower bank	19.0	43.4	67.4	85.1	96.3	99.3	99.6	99.8	99.9	100	100	100	100	100	100	100
SAC55	ML	Upper bank	27.7	77.4	94.8	96.5	97.6	98.5	99.0	99.5	99.8	100	100	100	100	100	100	100

Bank soil resistance to fluvial erosion

				Metrie	: units			English units							
		Cr	itical shear s	stress	Soil de	etachment c	oefficient	Crit	tical shear	stress	Soil de	etachment c	oefficient		
Study		-	(Pa)			(cm hr-1 Pa	-1)		(psf)			(ft³ lb-f-1 hr	-1)		
site	Test	Blaisdell	lterative	Regression	Blaisdell	lterative	Regression	Blaisdell	lterative	Regression	Blaisdell	lterative	Regression		
I A D 1	1	3.74	10.0	10.1	0.951	5.42	0.835	0.0781	0.209	0.211	1.49	8.51	1.31		
LAKI	2	0.075	2.33	2.57	5.19	12.0	11.9	0.00157	0.0487	0.0537	8.15	18.9	18.7		
LAR2	1	0.139	2.05	2.05	7.42	18.0	8.73	0.00290	0.0428	0.0428	11.7	28.3	13.7		
LAR4	1	1.28	6.21	6.38	0.822	3.53	4.03	0.0267	0.130	0.133	1.29	5.55	6.33		
	1	0.256	7.66	7.42	5.64	40.5	20.9	0.00535	0.160	0.155	8.86	63.6	32.8		
LAR5	2	5.25	6.07	6.07	12.5	65.2	19.3	0.110	0.127	0.127	19.6	102.4	30.3		
	3	0.004	0.871	0.408	30.1	51.8	27.2	8.36 x 10 ⁻⁵	0.0182	0.00852	47.3	81.4	42.7		
	1	0.186	4.96	4.23	4.96	23.9	10.7	0.00389	0.104	0.0884	7.79	37.5	16.8		
LAR8	2	0.007	0.00	1.45	5.34	5.34	3.64	1.46 x 10 ⁻⁴	0	0.0303	8.39	8.39	5.72		
	3	0.349	6.76	8.03	0.836	1.86	3.17	0.00729	0.141	0.168	1.31	2.92	4.98		
	1	0.048	4.35	4.27	4.28	15.4	8.42	0.00100	0.0909	0.0892	6.72	24.2	13.2		
LAR9	2	3.10	21.0	20.5	0.432	2.44	1.75	0.0648	0.439	0.428	0.679	3.83	2.75		
	3	5.15	20.3	20.2	0.509	2.34	2.51	0.108	0.424	0.422	0.800	3.68	3.94		
	1	0.417	10.3	9.92	1.64	9.21	4.46	0.00871	0.215	0.207	2.58	14.5	7.01		
	2	11.7	15.4	15.4	2.06	18.3	8.07	0.244	0.322	0.322	3.24	28.7	12.7		
5463	3	0.021	10.1	10.1	1.53	11.5	6.86	4.39 x 10-4	0.211	0.211	2.40	18.1	10.8		
JACJ	4	4.15	13.3	14.2	0.439	2.37	7.78	0.0867	0.278	0.297	0.690	3.72	12.2		
	5	0.451	7.57	7.65	0.912	3.24	3.52	0.00942	0.158	0.160	1.43	5.09	5.53		
	6	2.68	12.1	12.3	0.331	1.20	1.62	0.0560	0.253	0.257	0.520	1.89	2.54		
	1	6.84	23.0	24.7	0.260	1.15	2.53	0.143	0.480	0.516	0.408	1.81	3.97		
SAC7	2	1.85	10.1	16.9	0.320	0.740	4.70	0.0386	0.211	0.353	0.503	1.16	7.38		
	3	0.201	13.3	14.0	0.975	3.33	2.72	0.00420	0.278	0.292	1.53	5.23	4.27		

APPENDIX 2 NOTES

GH norre is LAR#1 Expected profile 9 un wassy muchne (1)(1000) And cartuct miciny portes l Sandy pebb We did 3 tests. The 2nd failed as it the formed a ledge and bene a adjuncter to compare SET remets with y based on jour hole site

big views, thorny bushes. Brand Sound Jet toxt location LAR2 Sandy growel/cosside but of mots near water line Completed 1 jet test in sandy moteral @ 0,5 psi. Went relatively well. Some minor henr szed rossts in testing area. Nice Symmetrical Scar hole. Highly permeable as woter in the Ribmergedie but Araked very quickly.

very lov Judeneh LAR3 srang The proposed por Sand test of te has approx loc old eronon as of 352 Simple enerminais the with cobbly sand roots (have become stand offens) are conviller Hurs exposed, but years more the star loops to have with a while ago. I do not thout if cobbles were placed or are natural. randonly selected Colde densky ix 1 m² 15 colder Colde sizes I largest diden Emellest diam 16 (cm) 15 10 18 3 6 20 10 18 41/2 12 6 22 21 15 Cerema

AR 4 moved Shielitly downstream Das the planned site was maccoshile because of step Stope and much Vegetation. The pieked location has Ginildr bank stope. Bank stope is reduced firtue downstruct. worp ADDODDERE plan view 6 10 108 forthar downshream jet lest locanon Soils are grayish sands that easily fall apart when stepped on. the pided location seems to be the start of the ruppap going downstream. Slopes are covered by yellow grasses and thoray bushes and one large trees. Coroma

This is the gife that have significant retreed ARS repl sedimente Sense coverner beaver notity Frayish Sand locators green frastes This site is just upstream of the rewer line and experienced a lot of a way and an an erosin during a high flar event a while ago. Conducted 4 jet tests with mixed renets. Sands are highly andible with rate of eroorm affected by roots. The first test last at 1 spsi had some bigger voots. Tost 2 at reduced pressures or 0,5 psi and 0,25 psi had fever, Smalle roots but croded easily at the start but Groop ling Ted in test 2 by deposition and by roots in test 3. Test 4 was conducted claser to the water fure and below water ha to get andy from Roots,

It seemed that rate where absent. Howaver, the test still showed significant isots below the tested surface no a cylindrical scour hole torned. A bit thicker (1/2 + mes) than an index Anger. The sidewalls were rough because of a lot of mosts.

ART lot of faller thees Very wordy Avod hin the crayish Sand was very look all the way down the bank. JET not R possibly possible, het inder the GPS was not tol cooperating. Did a 45 min 8058100 on a lot of DS prin and a orge wood at sere 30 min 80 Ston on the US pin. root are still attached Total station of bank vege hitron and steepness of bank profile prevented the bottom por hion to bootbe visible. bike poten 30M Cerema

Page 87

Erodibility of Bank Materials on the Lower American and Sacramento Rivers, adjacent to the City of Sacramento, California

LAR & 11/14/18 1:50 Get test voing LP1 (3 mm) Get course We did 3 tests on material that seemed highly eronon resistant as it o decided to test a 4 psi, But Vext teor @ 2 ps: Sume Story. then tred (i psi, which seened at but find econon may have been too nuch as this depth could have been I musted by deposition in the Second successful test dome at espsi, which appeared to have been better than that a psi third fest again thed a 0.5 psi but was not moving upped to 1 and 2 psi, was not moving much either. At the 1st 5 wohnte ster @ 2 psi got final Some eves in and decided to do 2 more 5 minute steps. At conclusion of test scour hole looked me, but there were some roots. Also this unterial was shippy moresticky

Could that have been the limited We had issues with the GPS. Seemed to be missing all ten CA almanacs, etc. This site comprised of two layers Sundy a foe, comme upper layer Pest ate tagwas invegetated and showed synthest eroson compared to vegetated neighboring sites Cohenve Kjer text location

ligios 2 30 LAR Munuk Sessions growthe Bund on pms pero fra 1 when wet gronyith bent bank for 2tests Heed to use ropes to get up & dam the bart. Top moterial was loose, grayith said. Middle material was appeared very strong passibly because of matric suction, when made wet it seemed to loose strength as JET @ 1 psi was able to scor it. The toc material was gray (brownish 87th / sandy material that required testing at 2 pri No peoples in bank

LAR 10 cistula then + gras are asfult valking (Ake lane Some plan ur The entitle profile comprises gray sands. There was a tatational failure quite a while ago. One free on the DS side of Leve Ship surface is hanging on wolk a lot of roots anchoring it. The except portion of the bank is mainly unvegetated. The top has trees and grasses. Cerem

111128 the ledge in LAR 11 Part of the leve A used by of ship ray of sand the home less prop This bank has riprop on the ~ 450 then there is a break of clope, furly covered by kaes and Shrups, & some accassome ripsp. to lowed by a chore ledge and then que levee. These surfaces are foressy. The ledge and leve soils seem to be thing confrere The gron, sindy soils that are regetated are looser.
1/17/18 asfalt SA Ant eve road 8587Uns ar director of rodero gral between base & rover root belas surface The bent profile consists of a mix of a pap and cobble on the tol at a gentle stope. Then there is a bench of groy soul (1250) with a. In in in in in in in a man an an an an an an occasional hiprop. the main ploped portion of the bank is rip rapped with gross and began trees (high up).

2 how session ope covered yand lach this site is located at an eruding bank. The benches have been used homeless. Tosts up high had some fine toots at bottom of scour hele.

Clo aut ban frass and Je & samples et test not possible because of triprop and grasses. Found 1 tsomas pin gravel rond slightly down on right side 04

11/27 rund iko lanes reart the when the services ne & GSD take y sund /w day seems evoyon reastant protection The site is the inner bank of a point bur, Bed slopes very genty away. arts here & out of doylight on 11/26 to do Ran JETS. JETS are shightly ups hear of toansect between two large trees as there was have menter al that was quite reastant to erosm. Seems therefore to have some da Cobble toe lining DS from here whereas improtected upstream.

SAC 8 Maile post v tota la some exposed Soils This site is heavily vegetated and appears to be ripropped up to the toe of the level. No opportunity for sets beca of the vegetation. There are some exposed sals just abae the riprop with steep faces. Took BD & GSD samples, Seems to be deposited materials

dontale pril 1 160 SAC9 house recorde willo pe This she has a michine of cobbles & riprop that extends to the base of the level. Lower portion is covered by a mixture of cobbles & uprop. There are willow and herbaceus vegetation covering most of the bank with an occasional thee. There is a City of Sacramento Benchmark adjacent to the site 337-B6A

8ACID USDer Walt of 01000 treps Nees Structure of for Most of Mos -This site is very similar to SAC MAS with deposition covering the riprap at the lower half of the bank. Riprop extends to the base of the leve. Pin hearby on culvert headwall 337-CTD City of Sacraments

APPENDIX 3 JET EROSION TEST DATA SHEETS

LAR1 - test 1

The second second

T GAUGE RDING	@ SUBSTRATE	12 0	т	Circle one Bed		TEST # /
PT GAUGE READ	ING @ NOZZLE		<	Bank fa	ce	DATE U/15/1
RELIMINARY HE	AD SETTING 0	5 ind				OPERATOR EJL
MATERIAL DESCI					WEATHER	Junny / Smithy
SCOUR DEPTH	READINGS		F	EAD SET	TING	
TIME DIFF (MIN) TIME	PT GAGE READING		TIME (MIN)	HEAD (IN)	NET HEAD (Psi)	Comments
(MIN)	they com		0		0.5	press
1/2 1/2	4.6				0.5	0.4 Streight
1 1/2	47				05	- as theread
2-6-	4.7				0:5	03 200
7 2	5.05				0.5	- 235 dua
10 4	SI				0.5	- 9 Cont
					1	
					· · · ·	
		· - 1	4			
			4			
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1.2				
				1	1. S. S. A.	
		2.1				
				1		
		1.1.1				
	100	63	1			1
		5 8				
		- 3				·

LAR1 - test 2

TEST LOCATION LAR		Circle one		K Date worked up
PT GAUGE RDING @ SUBSTRATE 4	5 cm	Bed Bank to Bank fai	e ce	TEST #
PT GAUGE READING @ NUZZLE		Durint los		DATE 11/15/1
PRELIMINARY HEAD SETTING	·			OPERATOR ETC
MATERIAL DESCRIPTION			WEATHER	Suntry but he
A READ DECT L DEADINGS		HEAD SET	IING	Included 1
TIME DIFF PT GAGE	TIME	HEAD	NET HEAD	1
(MIN) TIME READING	- (MIN)	(IN)	(Psi)	Comments
(MIN) (MIN)	0		05	pressure reduce
1/2 1/2 5.2			035	07 10,035 PS
192 12 57			0.35	16
2+15 62			0.35	17
3 1 6.2			0.35	26
3 2 43			0.35	2.9
10 3 1.7			0-16	3.2.
		-		
		-		
		-		
				-
		1		
	L	1		

LAR2

TEST LOCATION LAR2	6E49	Circle on	e	K Date worked up
T GAUGE RDING @ SUBSTRATE	20 1.1	Bank to Bank fa	e .	TEST #
PT GAUGE READING @ NOZZLE	5	Dunite		DATE 4/15/18
	and		WEATHER	SUMMY
	···· [···	HEAD SET	TING	
SCOUR DEPTH READINGS	TIME	HEAD	NET HEAD	
(MIN) TIME READING	(MIN)	(IN)	(Psi)	Comments
0 9 47 9	-0		0.5	-/8
12/ 12 9:1:			05	205
2 14			0.5	2.5
3 6 255			0.5	2,65
5 5 87			0.5	3.8
10 5 94			0.5	45
		-	1	· · · · · · · · · · · · · · · · · · ·
	.	-		
	1.0			
				A. 1.
			· · ·	
-				
	1.00	1		
1				
		-		
	1			
	1			
				· · · · · · · · · · · · · · · · · · ·

LAR4

TESTLO	CATION	LAR	4	1. 1. 	Circles one		K
PT GAUG	E RDING	@ SUBSTR	ATE 46 Mor	24	Bed Bank to	, е	TEST# (
PT GAUG	E READI	NG @ NOZZI	LE 9 imm	<	Bank fa	ce	DATE 11/16/18
PRELIMIN	IARY HE	AD SETTING	0.5	1 0-	1		OPERATOR ETL
MATERIA	L DESCR	IPTION	Highly	evol	te	WEATHER	Survey but hazy
			1	L	EAD SET	TING	Percenter
SCOUR	DEPTH	READINGS		TIME	HEAD	NET HEAD	
TIME	DIFF	PT GAGE	100 C	(MIND	(INI)	(Pei)	
(MIN)	TIME	READING	and T	(IMINA)	(0.4)	(1 31)	Comments
	(MIN)	17)	(MM)	0		0.5	FEOUR
0	110	-150-				05	25
14-	15	000				05	<u> </u>
2	11/	52	1			0.5	6
4	4	SS				0.5	-9
8	4	57				0.5	14
12	4	18.5				134	14
120	8	60		· · · ·			-17.
					-		<u> </u>
					1000		
-							-
	1.						
			11 . C				
		-		1.1			
			D & 25				
			1				
			1				
				1			
							· · · · · · · · · · · · · · · · · · ·
			1				
		· · · · · ·					

LAR5 - test 1

TESTL	OCATION	LA	25		Circle on	A 10	K Date worked	up
PT GAU	GE RDING	@ SUBSTR	ATE YOM	m	Bed	2	TEST #	I
PT GAU	GE READ	ING @ NOZZ	E Fin	m	Bank fa	ce	1201 #	- 11/16/18
PRELIM	NARY HE	AD SETTING	1	<u></u>			DAI	= 1110110
MATER	AL DESC	RIPTION	wet 1	mayin	1 Sang	d	OPERATO	R EUC
MATER	L DLOG		0			WEATHER	Juny	& Smoky
scou	R DEPTH	READINGS	1		HEAD SET	TING		
TIME	DIFF	PT GAGE		TIME	(IN)	(Psi)	The est	
(MIN)	(MIN)	HT)	MM)	(MILI)	(44)		Cor	nments
0	0	40		0		4	Using -	top of hand
114	12	65				1	25	An accit of
120	1/2	451			1			M SEDLY
240	11/2	20	1.			·		hole
1	110							
							<u> </u>	
			1.5					
			1.1	-				
			per la la					
					-			
					1			
			1.16					
		-			_			
					-	• • •		and a second second second second second
			5 × 14 5			- · ·		
			-	1 10 1	1			
-			1. A . A		-			
					1			
		-			-			
				L			State and	- 53 P

LAR5 - test 2

TEST LOCATI	ON UARE	2		Circle one		K Date worked up
PT GAUGE RD	ING @ SUBSTRATE	41 mm	1 (Bed Bank to	8	TEST# 3
PT GAUGE RE/	ADING @ NOZZLE	9 mm		Bank fa	će	DATE [1/16/18
PRELIMINARY	HEAD SETTING	El pro	0.25	- psr'		OPERATOR CTL
MATERIAL DES		1+18 M	Sand	wet	WEATHER	Sunua & Smoky
SCOUR DEPT	TH READINGS	E	H	EAD SETT	TING	-1 11
TIME DIFF (MIN) TIME	PT GAGE READING	a a k	TIME (MIN)	HEAD (IN)	NET HEAD (Psi)	- bottom of handle
0 0) (FT)		0		025	Very Gual head
1/4 Hz	49		•		0.20	
7 2	49.5	-			0,25	Stuck on roots
	· · · · · · · · · · · · · · · ·	F				
		F				
<u>.</u>			2			
		E.				
					-	
		- F		· ·		
* 1 ×						
·			·. /			
		· · · ·				
			19	5. J.		

LAR5 - test 3

TRATI	OCATION	iAes	5		1.2		ĸ
IESI L	UCATION			1	Circle one	0	Date worked up
PT GAŲ	GE RDIN	G @ SUBSTRA	TE 39. MM		Bed Bank to	е.	TEST# 4
PT GAU	GE READ	ING @ NOZZL	E 7 min		Bank fa	ce	· · · · · · · · ·
							DATE ///16/18
PRELIM	INARY HE	AD SETTING	OZS ps.				OPERATOR FIT
	IL DEPC	DIDTION	GORY ICA	NOYIL	VET		,
MATERI	AL DESU	KIP HON	orect as		1	WEATHER	SUNNY & SMOKEY
SCOU	R DEPTH	READINGS		H	EAD SET	TING	
TIME	DIFF	PT GAGE		TIME	HEAD	NET HEAD	
(MIN)	TIME	READING		(MIN)	(IN)	(Psi)	Commente
	(MIN)	MMAPT)		0		1025	Excevated quite a
0	0	37	201	Dit		0.25	To act away from re
1.0	0.5	69	1	1.0		0.25	but very were ghill ye
2.0	1.0	82	THE STATE OF THE	200		0.25	
3.0	1.0	85	- 3	30	-	0:25	
50	2.0	76	18 - Ang	5.0		0.0	scour hole was
					-		adjudr Ead, with
							the 14 war Che
							1/2 Folda Sant
			8 4.84				- icaira rigi
							Rook hugted the
		1					- discussed of the
							Scarace
					-		×.
-					1		
		-		· · ·			
						1 10 10 1	
		,	3				29
			1				
			5 B B				•
				-			
			1				

LAR8 - test 1

TESTL	OCATION	LAR	8 3.10	139	Circle on	e	K Date worked up
PT GAU	GE RDIN	3 @ SUBSTRA	ATE STR	<u>c</u> int	Bed Bank to Bank fa	e	TEST # 23
PT GAU	GE READ	ING @ NOZZ	F1:		Land	2	DATE 11/14/18
MATERI	AL DESCI	RIPTION	Cohasive			-	OPERATOR EJC
				· · · · ·		TING	moky
SCOU TIME	DIFF	PT GAGE		TIME .	HEAD	NET HEAD	
(MIN)	TIME	READING		(MIN)	(IN)	(Psi)	Comments
0	0	300	3.9	0		1424	1.9 7.8
1/2/	1/2	6.2	5.8				04 0.8
1/2	12	6.9					. e 1.9
4	T	78	1.				0.2 0.1
6	- 7	8.1					0.1 0.025
							- it
							the second second
				-			
		-					
			1	<u> </u>			
			1	2			
	1.7						
		1		-			
					1		

LAR8 - test 2

TEST LOCATION LAPE		Gircle on	a	K Date worked u	p
T GAUGE RDING @ SUBSTRATE	3.9 an	Bed Bank to	e	TEST#	2
T GAUGE READING @ NOZZLE C	+-	Bank la	ICE)	DATE	unylis
RELIMINARY HEAD SETTING	ienve c	lique	isne	OPERATOR	ETC
ATERIAL DESCRIPTION		1	WEATHER	smoty	· ····································
SCOUR DEPTH READINGS	TIME	HEAD SET	TING NET HEAD		-
(MIN) TIME READING	(MIN)	(IN)	(Psi)	Comm	vointe
(MIN) FTOW	0	1	0.45		iente
12 12 9.4				0.5	0.4
21/2 1/2 50				0.4	0.24
12 55				2.2	1.1
8 2 80				0.8	0.45
12 2 3.4				0.1	oaj
A 10 10 10 10 10 10 10 10 10 10 10 10 10					
1					
					· · ·
			1		
					-
	1.1				
	1				
		1			

LAR8 – test 3

JET TEST DATA					
		10 11		τ _ε	
TEST LOCATION LARB		Circle cov		K	
THE SUPERDATE 4		Bed		Date in State of	
PT GAUGE RDING @ SUBSTITUTE		Bank to	e.	TEST #3	
PT GAUGE READING @ NOZZLE 0.4	- (Bank fa	ce)	DATE 11/14	
05	120.17				
PRELIMINARY HEAD SET TING				OPERATOR ETL	
MATERIAL DESCRIPTION Certifice	, dif	e/sive	WEATHER	hucker .	
		0	_ WEATHER -	o mo	
SCOUR DEPTH READINGS	Н	EAD SET	TING	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
TIME DIFF PT GAGE	TIME	HEAD	NET HEAD		
(MIN) TIME READING	(MIN)	(IN)	(Psi)	Comments	
(MIN) (CC)	0		0.5		
1/2 1/2 4/	C.		0.5		
1/2 4.2			0.5		
4 5 4.3			0.5	Sultan To 1 ps	
			40		
12 4.2			1.0		
1 112 50			1.1		
2 5 52	1		1.1		
G1 5 5.2			- 1.1-	Switch to 2 951	
			21		
1/2 1/2 5.3			2.1	0.2 62	
12-1-59		1. 1.	2.1	0.2 0.1	
8/2 5 7.3		-	2.2	2.1 0.4	
131/2 5 29			2.2	3 0.06	
10/2 5 00					
		1			
· · · · · · · · · · · · · · · · · · ·					
	-	-			
		-			
		1			
CENERAL COMMENTS		1		Section Street and	
GENERAL COMMENTS					

LAR9 - test 1

TEST L		AR	ATE 40	1.5	Circle one Bed	•	Date worked up
T GAU	3E READI	NG @ NOZZ	LE <u>g inin</u>	<	Bank to Bank fa	e Ce	DATE 11/17/18
PRELIMI MATERI/	NARY HE AL DESCË	AD SETTING	Very days	silty sa	w/(?)	WEATHER	OPERATOR ETL SUNNY & SMOKY
- 0.5					EAD RET	TING	· · · · · · · · · · · · · · · · · · ·
SCOUP	R DEPTH	READINGS	- 1	TIME	LEAD SET	NET HEAD	
TIME (MIN)	DIFF	READING	(m)	(MIN)	(IN)	(Psi)	Comments
0	(MIN)	16		0		1	
16	15	58					_12
4	1/2	62					-110
2	1	22					-31
3	6	78				1	38
2+		- 24	1. F. 1. S. 1.			1	47
1	4	80				1	43
1							
							Vin as of Scall
							hole
							the second
							-FA-
-				100	-		
			-				
					- 2		
						1. 1. 1. L	
	1 a 1 -						
			1		1.1		-
			1				-
				1.63	1.1.2.2.1		

LAR9 - test 2

TEST L	OCATION	LAF	29		_ Circle on	0	K Date worked up
T GAU	GE RDING	@ SUBSTR	ATE 43	<u>.</u>	Bed Bank to	2	TEST#
T GAU	GE READ	ING @ NOZZ	LE 9	_	Bank ta	ice	DATE WITTIN
RELIM	NARY HE	AD SETTING	05 B	81			
ATERI	AL DESCR	RIPTION 4	grog brou	with Se	and	-	Sugar & Garaba
		d	leposat?			_WEATHER .	SUNIA & SWORD
SCOU	RDEPTH	READINGS		F	EAD SET	TING	a share to a
TIME	DIFF	PT GAGE'		TIME	HEAD	NET HEAD	
(MIN)	TIME	READING	1.1.1	(MIN)	(IN)	(Psi)	Commente
	(MIN)	(FT) (A	nn			DE	O
0	0	42				6.5	2
Y.2	12	45	5.5			1.5	2
2	1º	45			1	05	2
	0	115				G	A
16	-110	These				57	35
7	15	- 49.5				3	45
5	1	\$1.5	- 20			2	-7.5
3	1	54	14			2	-76
3	2	52				2	12
7		-0.5				2	12
-11-	Ŧ	360					
			200				
1				1.	-		
1		2					
			1				
-							
					1.		
			1. 1. 1.				
		1. Second second					
			1.1				

LAR9 - test 3

TEST L	OCATION	LAN	29		GM		K
PT GAU	GE RDÍNG	@ SUBSTR	ATE AD	\$16	Bed Bank tor	5.	TEST# 3
PT GAU	GE READ	ING @ NOZZ	LE 9 MM	-	Bank fa	ce	DATE ULT
PRELIMI	NARY HE	AD SETTING	2	lia A	4		OPERATOR ESC
MATERD	AL DESCÉ	RIPTION	Brownigh Bilty an	n (QVayis	.4	WEATHER	Sunny & Smokey
0001		READINGS	1	F H	EAD SET	TING	
TIME	DIFF	PT GAGE		TIME	HEAD	NET HEAD	
(MIN)	TIME	READING	0	(MIN)	(IN)	(Psi)	Comments
	(MIN)	ER/M	142	0 .		2	0
B	1/2	59	10.00			2	-5
9	1/2	53	8 B .			2	- G
2	11	50				2	70
5	2	57				2	-12-
7	2	55				2	13
-4-	7	9					
			1				
			100 C				
1	1						· · · · · · · · · · · · · · · · · · ·
			1				
					-		
	100		10 - 20 B				
		-	100			• • •	
			S				
			-				
		1	1				
			1 m 1				
			1	-			Restauring 1
		-	1		1		
OFUE	AL 00	MENTS					
GENER	KAL COI	VINENTS					

TESTL	OCATION	SAC	3	GH	Circle one		K Date worked up
PT GAU	GE RDING	@ SUBSTRAT	E43.5W	m	Bed Besk to:		теет # /
PT GAU	GE READ	ING @ NOZZLE	g mi	n	Bank fai	de low	12011
RELIM	INARY HE	AD SETTING	0.5 psi				DATE TITE
MATERI	AL DESCI		may brow	which s	andy		OPERATOR CIL
						WEATHER	fathany doudy
SCOU	R DEPTH	READINGS		н	EAD SETT	TING	
TIME	DIFF	PT GAGE		TIME	HEAD	(Psi)	
(MIN)	(MIN)	(ET)		(Mater) .	fusy	(r aiy	Comments
0	0	43.5		0		0.5	
1/2	12	JUE -				. 0.5	
2	1	44.5				05	
0		445				1	croding
1/2	12	45				1	aggregates
6	12	45.5				1	
4	2	46				11	
0	0	46				D	
Th	1/2	59				2	
12	1/2	28.5				Ś	
3	1	71		-		2	
5	2	77.5				2	Restace was less
12	5	74.5				2	copte than
					1		2 psi brpla
	· ·					· · · · · ·	Miranghit
					1		·
			1.1				
	•						<u> </u>

TEST L	OCATION		23	GH	Circle one	`	τ _c K Date worked up
PT GAUG	GE RDING GE READI	R @ SUBSTR	<u>ATE 991</u>	<u>nm</u>	Bed Bank to Bank fa	e) lou	TEST# 2
PRELIMI	NARY HE	AD SETTING	1 ps	i manish			OPERATOR DIL
MATERN	AL DESCR		Sand			WEATHER	partially cloudy
00015	DEDTU	DEADINGS	1	F	EAD SET	TING	
TIME	DIFF	PT GAGE		TIME , (MIN)	HEAD (IN)	NET HEAD (Psi)	
(MIN)	(MIN)	44	MM)	0			Comments
The	13	50.5					
24	2	52				1	
EH .	4	274					
	·						
						· ·	
-	s		1.43			•	
					1. 1		
		-					
]				·
GENER		MMENTS					<u></u>

TESTL		SAC	3	GH	Circle on Bed	e	K Date worked up
PT GAU PT GAU	GE RDING GE READI	ING @ NOZZ	LE 9 Min	<u>-</u>	Bank to	e Jav	TEST# <u>3</u> DATE <u>((/2</u>)
PRELIMI MATERI	NARY HE		ghayion ty sind	1. Novavn	ish	WEATHER	OPERATOR ET
1.4			1		EAD SET	TING	
TIME (MIN)	DIFF	PT GAGE READING	CARM	TIME (MIN)	HEAD (IN)	NET HEAD (Psi)	Comments
12	(MIN) 0 1/2	44		0		15	
12	12	27				1.5	
457	1	3/5				1.3	
-11	4	72					
	• .						
_	е н. 						
]	<u> </u>			

TROTIC		Ch/7	- THE IN	7 - NO	8 BANK	HEILHT	ĸ
TESTLC	JCATION	- SAC3	VEI WC		Circle one	3	Date worked up
T GAUG	GE RDING	@ SUBSTRA	TE 35 MK	4	Bed Bank to	e	test# 4
T GAUG	SE READ	NG @ NOZZL	E 3 MM	-	Bank fa	Ce MIN JE	ब
	1.1			-		101	DATE 11/26/2019
RELIMI	NARY HE	AD SETTING	1.0 psi				OPERATOR MJ
	. preef	UDTION	1 AVEV	SAND	- BR	ww	
ATERIA	L DESCR	de non	Contes	PLE		WEATHER	SUNNY
SCOUF	R DEPTH	READINGS		Н	EAD SET	TING	ally a start of the
TIME	DIFF	PT GAGE		TIME	HEAD	NET HEAD	
(MIN)	TIME	READING	1.1	(MIN)	(IN)	(1231)	Comments
	(MIN)	MM(PT)	1.00	0		1.0	
0	075	40 Mar	200 B	0.25		1.0	
0.05	0.25	43		0.5		Lo	
0.75	0.25	45	S. 2017 1.2	0.75		-41-1	
1.0	0.25	46		10			
1.5	0.5	47		7.5		- 11	
2.5	1.0	49	•	3.5		11	
55	2.0	50		5.5		11	
7.5	2.0	50		7.5		11	
12.5	5.0	51		12.5		11	
17.5	5.0	51		72.5		1.1	
725	50	12	11. 15	22.5		1.4	
32.5	To	52		32.5		14	
						1	
-	· · · ·					-	
		-					
			5				
			6 ²⁰ 13				
							4

TESTLOCATION SAC3	GH 2 mm	Circle on	e	K Date worked up
PT GAUGE RDING @ SUBSTRATE 9	um .	Bank to	ice up	TEST # <u>S</u> DATE 14Z
PRELIMINARY HEAD SETTING 4 MATERIAL DESCRIPTION	y Sind		WEATHER	OPERATOR ETL pashally class
COOLE OCOTU READINGS		IEAD SET	TING	r
TIME DIFF PT GAGE (MIN) TIME READING	TIME (MIN)	HEAD (IN)	NET HEAD (Psi)	Comments
0 0 43	0			
12 12 50			1	
3 62			1	
5 2 6ZJ			1	
12 4 69			1	air bubbles
21 4 69.5				
			1.1.1.1	
		1.		
	-			

TEST LOCATION SAC	3. UNI MAR	Circle one		K Date worked up
PT GAUGE RDING @ SUBSTRATE	a have	Bank toe	in Lip	TEST#
PT GAUGE READING @ NOZZLE	1 151			DATE 11/27
MATERIAL DESCRIPTION	ilty sund	^	WEATHER	pathally clarky
SCOUR DEPTH READINGS		HEAD SETT	ING	
TIME DIFF PT GAGE (MIN) TIME READING (MIN) (PD) (MM	(MIN)	HEAD (IN)	NET HEAD (Psi)	Comments
0 0 44	0			
12 425		-	-1-	
3 1 51				-
9 4 <u>55</u> 13 7 <u>57</u>				
サ ま あるら				aroud and a
	×			
	4	-		

TEST LOCAT	ION SA	c7				т _с К
PT GAUGE RE	DING @ SUBSTR	ATE 43 M	114	Circle one Bed Bank tor		Date worked up
PT GAUGE RE	EADING @ NOZZ	LE QN	m	Bank fa	ce	DATE_ 11/27
PRELIMINARY	HEAD SETTING	2 05	<u>57</u>			OPERATOR EJL
MATERIAL DE	SCRIPTION	2:144	Jund		WEATHER	Fogay
SCOUP DEP	THREADINGS	1	F	IEAD SETT	TING	
TIME DIF	F PT GAGE	1	TIME	HEAD	NET HEAD	
(MIN) .TIM	E READING	Lun .	(MIN)	(IN)	· (Psi)	Comments
(MIN	1) (PT) (MM)	0			Comments
1 1	- Uhr				2	
1 1/2	2 50.5				2	
1/2 1/	2 51	-			2	
21/2 31	1 12.5	+			2	
K.	5 54				2	
15 5	5 55.5				2	
20 -	5-16-	-				
	1 A.					
		-	-		No. 1	
	100		1		-	
	2 2 2 2					<u></u>
		-				
	- Nur	1		· · · · · · · · · · · · · · · · · · ·	· .	
]				
		1	-			
	1	1.502	1	5		
				1		
		-		-		
		1			1.1	
		1 .	-			
		-	-			
		1		1	1	hereiteg.
]			1	
GENERAL O				2.2.1	4	

JET T	EST DA	TA				
TEST LOCATION	8	ACT	GI	-1		
PT GAUGE RDING	G @ SUBSTR	_{ате} <u>44 m</u>	M	Bed Bank to	e	TEST #
PT GAUGE READ	ING @ NOZZ	<u>15 9 MM</u>	1	Bank fa	tar	DATE 1/27
MATERIAL DESC	RIPTION	sility	sand	-	WEATHER	OPERATOR CJU FUGGY
		1		HEAD SET	TING	
SCOUR DEPTH TIME DIFF (MIN) TIME (MIN) 0 0	READINGS PT GAGE READING	мп)	TIME (MIN)	HEAD (IN)	NET HEAD (Psi)	Comments
12 12	6100				W. Marine	erroreous pressur
4 4	Ros Ros Rig I				17.57.73	Tarre aggreectes Immitin guvr hole
				7		
		-		1		